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ABSTRACT

Algorithms are now regularly used to decide whether defen-
dants awaiting trial are too dangerous to be released back
into the community. In some cases, black defendants are sub-
stantially more likely than white defendants to be incorrectly
classified as high risk. To mitigate such disparities, several
techniques recently have been proposed to achieve algorith-
mic fairness. Here we reformulate algorithmic fairness as
constrained optimization: the objective is to maximize public
safety while satisfying formal fairness constraints designed
to reduce racial disparities. We show that for several past
definitions of fairness, the optimal algorithms that result re-
quire detaining defendants above race-specific risk thresholds.
We further show that the optimal unconstrained algorithm
requires applying a single, uniform threshold to all defen-
dants. The unconstrained algorithm thus maximizes public
safety while also satisfying one important understanding of
equality: that all individuals are held to the same standard,
irrespective of race. Because the optimal constrained and
unconstrained algorithms generally differ, there is tension
between improving public safety and satisfying prevailing
notions of algorithmic fairness. By examining data from
Broward County, Florida, we show that this trade-off can
be large in practice. We focus on algorithms for pretrial
release decisions, but the principles we discuss apply to other
domains, and also to human decision makers carrying out
structured decision rules.

1 INTRODUCTION

Judges nationwide use algorithms to help decide whether
defendants should be detained or released while awaiting
trial [11, 27]. One such algorithm, called COMPAS, assigns
defendants risk scores between 1 and 10 that indicate how
likely they are to commit a violent crime based on more
than 100 factors, including age, sex and criminal history.
For example, defendants with scores of 7 reoffend at twice
the rate as those with scores of 3. Accordingly, defendants
classified as high risk are much more likely to be detained
while awaiting trial than those classified as low risk.

These algorithms do not explicitly use race as an input.
Nevertheless, an analysis of defendants in Broward County,
Florida [2] revealed that black defendants are substantially
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more likely to be classified as high risk. Further, among
defendants who ultimately did not reoffend, blacks were more
than twice as likely as whites to be labeled as risky. Even
though these defendants did not go on to commit a crime,
being classified as high risk meant they were subjected to
harsher treatment by the courts. To reduce racial disparities
of this kind, several authors recently have proposed a variety
of fair decision algorithms [15, 18, 20-22]."

Here we reformulate algorithmic fairness as constrained
optimization: the objective is to maximize public safety while
satisfying formal fairness constraints. We show that for sev-
eral past definitions of fairness, the optimal algorithms that
result require applying multiple, race-specific thresholds to
individuals’ risk scores. One might, for example, detain white
defendants who score above 4, but detain black defendants
only if they score above 6. We further show that the optimal
unconstrained algorithm requires applying a single, uniform
threshold to all defendants. This safety-maximizing rule thus
satisfies one important understanding of equality: that all
individuals are held to the same standard, irrespective of race.
Since the optimal constrained and unconstrained algorithms
in general differ, there is tension between reducing racial dis-
parities and improving public safety. By examining data from
Broward County, we demonstrate that this tension is more
than theoretical. Adhering to past fairness definitions can
substantially decrease public safety; conversely, optimizing
for public safety alone can produce stark racial disparities.

We focus here on the problem of designing algorithms for
pretrial release decisions, but the principles we discuss apply
to other domains, and also to human decision makers carrying
out structured decision rules. We emphasize at the outset
that algorithmic decision making does not preclude additional,
or alternative, policy interventions. For example, one might
provide released defendants with robust social services aimed
at reducing recidivism, or conclude that it is more effective
and equitable to replace pretrial detention with non-custodial
supervision. Moreover, regardless of the algorithm used,
human discretion may be warranted in individual cases.

'We consider racial disparities because they have been at the center

of many recent debates in criminal justice, but the same logic applies
across a range of possible attributes, including gender.
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2 BACKGROUND
2.1 Defining algorithmic fairness

Existing approaches to algorithmic fairness typically proceed
in two steps. First, a formal criterion of fairness is defined;
then, a decision rule is developed to satisfy that measure,
either exactly or approximately. To formally define past fair-
ness measures, we introduce a general notion of (randomized)
decision rules. Suppose we have a vector x; € RP that we
interpret as the visible attributes of individual i. For example,
z might represent a defendant’s age, gender, race, and crimi-
nal history. We consider binary decisions (e.g., ap = release
and a; = detain), and define a decision algorithm, or a deci-
sion rule, to be any function d that specifies which action is
taken for each individual. To allow for probabilistic decisions,
we require only that d(z) € [0, 1].

Definition 2.1 (Decision rule). A decision rule is any mea-
surable function d : R? — [0, 1], where we interpret d(x) as
the probability that action a; is taken for an individual with
visible attributes x.

Before defining algorithmic fairness, we need three addi-
tional concepts. First, we define the group membership of
each individual to take a value from the set {g1,...,gx}. In
most cases, we imagine these groups indicate an individual’s
race, but they might also represent gender or other protected
attributes. We assume an individual’s racial group can be
inferred from their vector of observable attributes x;, and so
denote i’s group by g(z;). For example, if we encode race as
a coordinate in the vector z, then ¢ is simply a projection
onto this coordinate. Second, for each individual, we suppose
there is a quantity y that specifies the benefit of taking action
a; relative to action ag. For simplicity, we assume vy is binary
and normalized to take values 0 and 1, but many of our re-
sults can be extended to the more general case. For example,
in the pretrial setting, it is beneficial to detain a defendant
who would have committed a violent crime if released. Thus,
we might have y; = 1 for those defendants who would have
committed a violent crime if released, and y; = 0 otherwise.
Importantly, y is not known exactly to the decision maker,
who at the time of the decision has access only to information
encoded in the visible features z. Finally, we define random
variables X and Y that take on values X =z and Y =y
for an individual drawn randomly from the population of
interest (e.g., the population of defendants for whom pretrial
decisions must be made).

With this setup, we now describe three popular definitions
of algorithmic fairness.

(1) Statistical parity means that an equal proportion of
defendants are detained in each race group [15, 23,
34]. For example, white and black defendants are
detained at equal rates. Formally, statistical parity
means,

E[d(X) [ g(X)] = E[d(X))]. (1)

(2) Conditional statistical parity means that controlling
for a limited set of “legitimate” risk factors, an equal
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proportion of defendants are detained within each
race group [14, 22}.2 For example, among defendants
who have the same number of prior convictions, black
and white defendants are detained at equal rates.
Suppose £ : R? — R™ is a projection of = to factors
considered legitimate. Then conditional statistical
parity means,

E[d(X) [ £(X), g(X)] = E[d(X) | £(X)]. (2)

(3) Predictive equality means that the accuracy of de-
cisions is equal across race groups, as measured by
false positive rate (FPR) [18, 24, 33]. This condition
means that among defendants who would not have
gone on to commit a violent crime if released, de-
tention rates are equal across race groups. Formally,
predictive equality means,

Eld(X) | Y =0, g(X)] = E[d(X) | Y = 0]. )

As noted above, a major criticism of COMPAS is
that the rate of false positives is higher among blacks
than whites [2].

2.2 Related work

The literature on designing fair algorithms is extensive and
interdisciplinary. Here we focus on algorithmic decision mak-
ing in the criminal justice system, and briefly discuss several
interrelated strands of past empirical and theoretical work.

Statistical risk assessment has been used in criminal justice
for nearly one hundred years, dating back to parole decisions
in the 1920s. Several empirical studies have measured the
effects of adopting such decision aids. In a randomized con-
trolled trial, the Philadelphia Adult Probation and Parole
Department evaluated the effectiveness of a risk assessment
tool developed by Berk et al. [8], and found the tool reduced
the burden on parolees without significantly increasing rates
of re-offense [1]. In a study by Danner et al. [13], pretrial
services agencies in Virginia were randomly chosen to adopt
supervision guidelines based on a risk assessment tool. Defen-
dants processed by the chosen agencies more nearly twice as
likely to be released, and these released defendants were on
average less risky than those released by agencies not using
the tool.?

2Conditional statistical parity is closely related to the idea of fairness
through blindness, in which one attempts to create fair algorithms
by prohibiting use of protected attributes, such as race. However,
as frequently noted, it is difficult to restrict to “legitimate” features
that do not at least partially correlate with race and other protected
attributes, and so one cannot be completely “blind” to the sensitive
information [14]. Moreover, unlike the other definitions of fairness,
this one does not necessarily reduce racial disparities. Conditional
statistical parity mitigates these limitations of the blindness approach
while preserving its intuitive appeal.

3Despite such aggregate benefits, Starr [32] has argued that statis-
tical tools do not provide sufficiently precise estimates of individual
recidivism risk to legally or ethically justify their use, particularly for
sentencing and parole decisions. Eric Holder, former Attorney General
of the United States, has been similarly critical of risk assessment
tools, arguing that “[e]qual justice can only mean individualized jus-
tice, with charges, convictions, and sentences befitting the conduct of
each defendant and the particular crime he or she commits” [19].
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A number of authors have developed algorithms that guar-
antee formal definitions of fairness are satisfied. To ensure
statistical parity, Feldman et al. [15] propose “repairing” at-
tributes or risk scores by converting them to within-group
percentiles. For example, a black defendant riskier than 90%
of black defendants would receive the same transformed score
as a white defendant riskier than 90% of white defendants.
A single decision threshold applied to the transformed scores
would then result in equal detention rates across groups.
Kamiran et al. [22] propose a similar method (called “local
massaging”) to achieve conditional statistical parity. Given a
set of decisions, they stratify the population by “legitimate”
factors (such as number of prior convictions), and then al-
ter decisions within each stratum so that: (1) the overall
proportion of people detained within each stratum remains
unchanged; and (2) the detention rates in the stratum are
equal across race groups.? Finally, Hardt et al. [18] propose
a method for constructing randomized decision rules that
ensure true positive and false positive rates are equal across
race groups, a criterion of fairness that they call equalized
odds; they further study the case in which only true positive
rates must be equal, which they call equal opportunity.

The definitions of algorithmic fairness discussed above
assess the fairness of decisions; in contrast, some authors
consider the fairness of risk scores, like those produced by
COMPAS. The dominant fairness criterion in this case is
calibration.® Calibration means that among defendants with
a given risk score, the proportion who reoffend is the same
across race groups. Formally, given risk scores s(X), calibra-
tion means,

Pr(Y =1]s(X), g(X)) =Pr(Y =1 s(X)). (4)

Several researchers—including ourselves [12]—have pointed
out that calibration is inherently incompatible with various
alternative notions of fairness. For example, Kleinberg et al.
[24] prove that except in degenerate cases, no algorithm can
simultaneously satisfy the following three properties: (1)
calibration; (2) balance for the negative class, meaning that
among defendants who would not commit a crime if released,
average risk score is equal across race group; and (3) balance
for the positive class, meaning that among defendants who
would commit a crime if released, average risk score is equal
across race group. Chouldechova [10] similarly considers the
tension between calibration and alternative definitions of
fairness.

3 OPTIMAL DECISION RULES

Policymakers wishing to satisfy a particular definition of
fairness are necessarily restricted in the set of decision rules
that they can apply. In general, however, multiple rules
satisfy any given fairness criterion, and so one must still
decide which rule to adopt from among those satisfying the

4In their context, they consider human decisions, rather than algorith-
mic ones, but the same de-biasing procedure can be applied to any
rule.

5Calibration is sometimes called predictive parity; we use “calibration”
here to distinguish it from predictive equality, meaning equal false
positive rates.
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constraint. In making this choice, we assume policymakers
seek to maximize a specific notion of utility, which we detail
below.

In the pretrial setting, one must balance two factors: the
benefit of preventing violent crime committed by released
defendants on the one hand, and the social and economic
costs of detention on the other.® To capture these costs and
benefits, we define the immediate utility of a decision rule as
follows.

Definition 3.1 (Immediate utility). For ¢ a constant such
that 0 < ¢ < 1, the immediate utility of a decision rule d is

u(d,c) =E[Yd(X) — cd(X)]
= E[Yd(X)] - cE[d(X)]. (5)

The first term in Eq. (5) is the expected benefit of the
decision rule, and the second term its costs.” For pretrial de-
cisions, the first term is proportional to the expected number
of violent crimes prevented under d, and the second term is
proportional to the expected number of people detained. The
constant c is the cost of detention in units of crime prevented.
We call this immediate utility to clarify that it reflects only
the proximate costs and benefits of decisions. It does not,
for example, consider the long-term, systemic effects of a
decision rule.

We can rewrite immediate utility as

w(d,c) = E[E[Yd(X) — cd(X) | X]]
=E [py)xd(X) — cd(X)]
=E [d(X)(pvix — )] (6)

where py|x = Pr(Y = 1| X). This latter expression shows
that it is beneficial to detain an individual precisely when
Py|x > ¢, and is a convenient reformulation for our deriva-
tions below.

Our definition of immediate utility implicitly encodes two
important assumptions. First, since Y is binary, all violent
crime is assumed to be equally costly. Second, the cost of
detaining every individual is assumed to be ¢, without regard
to personal characteristics. Both of these restrictions can
be relaxed without significantly affecting our formal results.
In practice, however, it is often difficult to approximate
individualized costs and benefits of detention, and so we
proceed with this framing of the problem.

Among the rules that satisfy a chosen fairness criterion,
we assume policymakers would prefer the one that maximizes
immediate utility. For example, if policymakers wish to
ensure statistical parity, they might first consider all decision
rules that guarantee statistical parity is satisfied, and then
adopt the utility-maximizing rule among this subset.

For the three fairness definitions we consider (statistical
parity, conditional statistical parity, and predictive equality)
we show next that the optimal algorithms that result are

8Some jurisdictions consider flight risk, but safety is typically the
dominant concern.

"We could equivalently define immediate utility in terms of the rel-
ative costs of false positives and false negatives, but we believe our
formulation better reflects the concrete trade-offs policymakers face.
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simple, deterministic threshold rules based on py|x. For
statistical parity and predictive equality, the optimal algo-
rithms detain defendants when py | x exceeds a group-specific
threshold. For example, black defendants might be detained
if pyx > 0.2, and white defendants detained if py|x > 0.1.
The exact thresholds for statistical parity differ from those
for predictive equality. For conditional statistical parity, the
thresholds in the optimal decision rule depend on both group
membership and the “legitimate” factors £(X). Finally, we
show that the unconstrained utility-maximizing algorithm
applies a single, uniform threshold to all individuals, irrespec-
tive of group membership. Importantly, since the optimal
constrained algorithms differ from the optimal unconstrained
algorithm, fairness has a cost.

To prove these results, we require one more technical cri-
terion: that the distribution of py|x has a strictly positive
density on [0,1]. Intuitively, py|x is the risk score for a ran-
domly selected individual with visible attributes X. Having
a density means that the distribution of py|x does not have
any point masses: for example, the probability that pyx
exactly equals 0.1 is zero. Positivity means that in any sub-
interval, there is non-zero (though possibly small) probability
an individual has risk score in that interval. From an applied
perspective, this is a relatively weak condition, since starting
from any risk distribution we can achieve this property by
smoothing the distribution by an arbitrarily small amount.
But the criterion serves two important technical purposes.
First, with this assumption, there are always deterministic
decision rules that satisfy each fairness definition; and second,
it implies that the optimal decision rules are unique.

We now state our main theoretical result.

THEOREM 3.2. Suppose D(py|x) has positive density on
[0,1]. The optimal decision rules d* that mazimize u(d,c)
under various fairness conditions have the following form,
and are unique up to a set of probability zero.

(1) The unconstrained optimum is

&' (X) = 1 pyix2c
0 otherwise

(2) Among rules satisfying statistical parity, the optimum
18

4" (X) = 1 pyix 2 tyx)
0 otherwise

where tyx) € [0,1] are constants that depend only
on group membership. The optimal rule satisfying
predictive equality takes the same form, though the
values of the group-specific thresholds are different.

(3) Additionally suppose D(py|x | £(X) = 1) has positive
density on [0,1]. Among rules satisfying conditional
statistical parity, the optimum is

& (X) = 1 pyix = tgx).ex)
0 otherwise

where ty(xy,0x) € [0,1] are constants that depend on
group membership and “legitimate” attributes.
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Before presenting the formal proof of Theorem 3.2, we
sketch out the argument. From Eq. (6), it follows immedi-
ately that (unconstrained) utility is maximized for a rule that
deterministically detains defendants if and only if py|x > c.
The optimal rule satisfying statistical parity necessarily de-
tains the same proportion p* of defendants in each group; it is
thus clear that utility is maximized by setting the thresholds
so that the riskiest proportion p* of defendants is detained in
each group. Similar logic establishes the result for conditional
statistical parity. (In both cases, our assumption on the dis-
tribution of the risk scores ensures these thresholds exist.)
The predictive equality constraint is the most complicated
to analyze. Starting from any non-threshold rule d satisfying
predictive equality, we show that one can derive a rule d’
satisfying predictive equality such that u(d’, c) > u(d, c); this
in turn implies a threshold rule is optimal. We construct d’
in three steps. First, we show that under the original rule d
there must exist some low-risk defendants that are detained
while some relatively high-risk defendants are released. Next,
we show that if d’ has the same false positive rate as d, then
u(d’, ¢) > u(d,c) if and only if more defendants are detained
under d’. This is because having equal false positive rates
means that d and d’ detain the same number of people who
would not have committed a violent crime if released; under
this restriction, detaining more people means detaining more
people who would have committed a violent crime, which
improves utility. Finally, we show that one can preserve
false positive rates by releasing the low-risk individuals and
detaining an even greater number of the high-risk individuals;
this last statement follows because releasing low-risk individ-
uals decreases the false positive rate faster than detaining
high-risk individuals increases it.

PROOF. As described above, it is clear that threshold rules
are optimal absent fairness constraints, and also in the case
of statistical parity and conditional statistical parity. We now
establish the result for predictive equality; we then prove the
uniqueness of these rules.

Suppose d is a decision rule satisfying equal false positive
rates and which is not equivalent to a multiple-threshold rule.
We shall construct a new decision rule d’ satisfying equal
false positive rates, and such that u(d’,c) > u(d,c). Since
this construction shows any non-multiple-threshold rule can
be improved, the optimal rule must be a multiple-threshold
rule.

Because d is not equivalent to a multiple-threshold rule,
there exist relatively low-risk individuals that are detained
and relatively high-risk individuals that are released. To
see this, define ¢, to be the threshold that detains the same
proportion of group a as d does:

E[d(X) | g(X) = a] =E [1{py|x > ta} | 9(X) =q] .

Such thresholds exist by our assumption on the distribution
of py|x. Since d is not equivalent to a multiple-threshold
rule, there must be a group a* for which, in expectation,
some defendants below t,+ will be detained and an equal
proportion of defendants above t,= released. Let 28 equal



Algorithmic decision making and the cost of fairness

the proportion of defendants “misclassified” (with respect to
tq+) in this way:
B=E [1{py|x > tar }(1 — d(X)) |
=E [I{pvix <t }d(X) | g(X) = a"]
>0,

where we note that Pr(py|x = tax) = 0.
For 0 < t; <ty <1, define the rule

1 Pyix = t2, g(X) =a”
d:51,t2(X): 0 Py |x <t1,g(X):a*
d(X) otherwise

This rule detains

Ba(tr, t2) = E [L{py|x > t2}(1 - d(X)) | g(X) = a”]

defendants above the threshold who were released under d.
Further,

va(t1,t2) = E []l{pwx > t2}(1 -

< (1 —t2)Ba(t1, ta)

d(X))(1 = py|x) | 9(X) = a']

defendants are newly detained and “innocent” (i.e., would
not have gone on to commit a violent crime). Similarly, dy, ;,
releases

Bi(tr,t2) = E [I{py|x < t1}d(X) | g(X) = a”]

defendants below the threshold that were detained under d,
resulting in

Y (t1,t2) = E [1{py|x < t1}d(X)(1 —pyx) | 9(X) =a”]

> (1 —t1)Bi(t1,t2)

fewer innocent detainees.

Now choose t1 < tq+ < t2 such that 31 (¢1, t2)
B/2. Such thresholds exist because: 1 (to*,ta*)
B, ﬂl(ov ) = ﬂZ('v 1

= Ba(t1,t2) =
= Ba(tax,tax) =
) = 0, and the functions §; are continu-
ous in each coordinate. Then, v1(t1,t2) > (1 — ¢1)3/2 and
’72(151,252) < (1 — tg)ﬁ/Q, SO Wl(tl,tg) > ’Yg(tl,tz). This in-
equality implies that dj, ,, releases more innocent low-risk
people than it detains innocent high-risk people (compared
to d).

To equalize false positive rates between d and d’ we must
equalize v1 and 72, and so we need to decrease t; in order
to release fewer low-risk people. Note that 1 is continuous
in each coordinate, v1(0,-) = 0, and 2 depends only on its
second coordinate. There thus exists ] € [0,¢1) such that
yi(th,t2) = va(t1,t2) = v2(t1,t2). Further, since t] < ti,
B1(t1,t2) < Bi(ti,t2) = Ba2(t1,t2). Consequently, d;’l,tz has
the same false positive rate as d but detains more people.

Finally, since false positive rates are equal, detaining extra
people means detaining more people who go on to commit a
violent crime. As a result déll,tg has strictly higher immediate
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utility than d:
u(d;wz,c) —u(d,c) =E

=E [dy ,,(X)(1 = )] ~E [d};
—E[d(X)(1 - o] +E [d(X)(1 ~ pyx)]
1—0( [ ]—E[d(x)])

=(1-¢) [ 2 (81, t2) — ﬂl(tllvtz)}
> 0.

th tg

The second-to-last equality follows from the fact that dgfl o
and d have equal false positive rates, which in turn implies
that

E [diy 1, (X)(1 = pyix)| = E[dX)(1 = pyix)]

Thus, starting from an arbitrary non-threshold rule satisfying
predictive equality, we have constructed a threshold rule with
strictly higher utility that also satisfies predictive equality;
as a consequence, threshold rules are optimal.

We now establish uniqueness of the optimal rules for each
fairness constraint. Optimality for the unconstrained algo-
rithm is clear, and so we consider only the constrained rules,
starting with statistical parity. Denote by d, the rule that
detains the riskiest proportion «a of individuals in each group;
this rule is the unique optimum among those with detention
rate a satisfying statistical parity. Define

f(@) = u(da; c)
=E [do(X)py|x] — ca.

The first term of f(«) is strictly concave, because d, detains
progressively less risky people as « increases. The second
term of f(«) is linear. Consequently, f(«) is strictly concave
and has a unique maximizer. A similar argument shows
uniqueness of the optimal rule for conditional statistical
parity.

To establish uniqueness in the case of predictive equality,
we first restrict to the set of threshold rules, since we showed
above that non-threshold rules are suboptimal. Let d, be
the unique, optimal threshold rule having false positive rate
o in each group. Now let g(o) be the detention rate under
do. Since g is strictly increasing, there is a unique, optimal
threshold rule d,, that satisfies predictive equality and de-
tains a proportion a of defendants: namely, d,, = dg—1(a)-
Uniqueness now follows by the same argument we gave for
statistical parity. |

Threshold algorithms have been previously proposed to
achieve the three fairness criteria we consider [15, 18, 22]. We
note, however, two important distinctions between our work
and past research. First, the optimality of such algorithms
has not been previously established, and indeed previously
proposed decision rules are not always optimal.® Second, our

8Feldman et al.’s [15] algorithm for achieving statistical parity is opti-
mal only if one “repairs” risk scores py|x rather than individual at-
tributes. Applying Kamiran et. al’s local massaging algorithm [22] for
achieving conditional statistical parity yields a non-optimal multiple-
threshold rule, even if one starts with the optimal single threshold rule.

[.0:(X) 0y 1x = )] = E[d(X) (py1x — 0]

(01 = py i)
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results clarify the need for race-specific decision thresholds
to achieve prevailing notions of algorithmic fairness. We
thus identify an inherent tension between satisfying com-
mon fairness constraints and treating all individuals equally,
irrespective of race.

Our definition of immediate utility does not put a hard
cap on the number of people detained, but rather balances
detention rates with public safety benefits via the constant
c. Proposition 3.3 below shows that one can equivalently
view the optimization problem as maximizing public safety
while detaining a specified number of individuals. As a
consequence, the results in Theorem 3.2—where immediate
utility is maximized under a fairness constraint—also hold
when public safety is optimized under constraints on both
fairness and the proportion of defendants detained. This
reformulation is useful for our empirical analysis in Section 4.

PROPOSITION 3.3. Suppose D is the set of decision rules
satisfying statistical parity, conditional statistical parity, pre-
dictive equality, or the full set of all decision rules. There is
a bijection f on the interval [0, 1] such that

argmaxE [Yd(X) — cd(X)] = argmax E[Yd(X)] (7)

deD deD
E[d(X)]=f(c)
where the equivalence of the mazimizers in (7) is defined up
to a set of probability zero.

ProOOF. Let f(c) = E[d*(X)], where d* is the unique
maximizer of u(d, c) under the constraint d € D. For a fixed
¢, if a decision rule maximizes the right-hand side of (7)
then it is straightforward to see that it also maximizes the
left-hand side. By uniqueness of the solution to the left-hand
side, the solution to the right-hand side is also unique. The
equality in Eq. (7) thus holds for all c.

It remains to be shown that f is a bijection. For fixed
¢ and «, the proof of Theorem 3.2 established that there
is a unique, utility-maximizing threshold rule d, € D that
detains a fraction « of individuals. Let g(a) = u(da, c). Now,

/ d
= —E[Ydo(X) — cda(X
J(0) = LBV (X) ~ eda(X)
= L (B[Vda(X)] - ca)
and so g(«) is maximized at o such that
4 B yda(x)] = ¢
da « -

In other words, the optimal detention rate a* is such that
the marginal person detained has probability c of reoffending.
Thus, as ¢ decreases, the optimal detention threshold de-
creases, and the proportion detained increases. Consequently,
if c1 < c2 then f(c1) > f(c2), and so f is injective. To show
that f is surjective, note that f(0) =1 and f(1) = 0; the
result now follows from continuity of f. O

Hardt et al. [18] hint at the optimality of their algorithm for achieving
predictive equality—and in fact their algorithm is optimal—but they
do not provide a proof.
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Percent of Estimated

Constraint detainees that are increase in
low risk violent crime

Statistical parity 17% 9%
Predictive equal- 14% ™%
ity
Cond. stat. par- 10% 4%
ity

Table 1: Based on the Broward County data, satisfy-
ing common fairness definitions results in detaining
low-risk defendants while reducing public safety. For
each fairness constraint, we estimate the increase in
violent crime committed by released defendants, rel-
ative to a rule that optimizes for public safety alone;
and the proportion of detained defendants that are
low risk (i.e., would be released if we again consid-
ered only public safety).

4 THE COST OF FAIRNESS

As shown above, the optimal algorithms under past notions
of fairness differ from the unconstrained solution.’ Conse-
quently, satisfying common definitions of fairness means one
must in theory sacrifice some degree of public safety. We
turn next to the question of how great this public safety loss
might be in practice.

We use data from Broward County, Florida originally
compiled by ProPublica [25]. Following their analysis, we
only consider black and white defendants who were assigned
COMPAS risk scores within 30 days of their arrest, and were
not arrested for an ordinary traffic crime. We further restrict
to those defendants who either were arrested for a violent
crime within two years of their original arrest, or spent at
least two years outside a correctional facility without being
arrested for a violent crime. Following standard practice, we
use this two-year violent recidivism metric to approximate
the benefit y; of detention: we set y; = 1 for those who
reoffended, and y; = 0 for those who did not. For the 3,377
defendants satisfying these criteria, the dataset includes race,
age, sex, number of prior convictions, and COMPAS violent
crime risk score (a discrete score between 1 and 10).

The COMPAS scores may not be the most accurate esti-
mates of risk, both because the scores are discretized and
because they are not trained specifically for Broward County.
Therefore, to estimate py|x we re-train a risk assessment
model that predicts two-year violent recidivism using L!-
regularized logistic regression followed by Platt scaling [29].
The model is based on all available features for each defen-
dant, excluding race. Our risk scores achieve higher AUC on
a held-out set of defendants than the COMPAS scores (0.75
vs. 0.73). We note that adding race to this model does not
improve performance, as measured by AUC on the test set.

90One can construct examples in which the group-specific thresholds
coincide, leading to a single threshold, but it is unlikely for the thresh-
olds to be ezactly equal in practice. We discuss this possibility further
in Section 5.
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We investigate the three past fairness definitions previously
discussed: statistical parity, conditional statistical parity, and
predictive equality. For each definition, we find the set of
thresholds that produce a decision rule that: (1) satisfies the
fairness definition; (2) detains 30% of defendants; and (3)
maximizes expected public safety subject to (1) and (2). The
proportion of defendants detained is chosen to match the
fraction of defendants classified as medium or high risk by
COMPAS (scoring 5 or greater). Conditional statistical parity
requires that one define the “legitimate” factors £(X), and
this choice significantly impacts results. For example, if all
variables are deemed legitimate, then this fairness condition
imposes no constraint on the algorithm. In our application,
we consider only a defendant’s number of prior convictions to
be legitimate; to deal with sparsity in the data, we partition
prior convictions into four bins: 0, 1-2, 34, and 5 or more.

We estimate two quantities for each decision rule: the
increase in violent crime committed by released defendants,
relative to a rule that optimizes for public safety alone, ig-
noring formal fairness requirements; and the proportion of
detained defendants that are low risk (i.e., would be released
if we again considered only public safety). We compute these
numbers on 100 random train-test splits of the data. On
each iteration, we train the risk score model and find the
optimal thresholds using 70% of the data, and then calculate
the two statistics on the remaining 30%. Ties are broken
randomly when they occur, and we report results averaged
over all runs.

For each fairness constraint, Table 1 shows that violent
recidivism increases while low risk defendants are detained.
For example, when we enforce statistical parity, 17% of de-
tained defendants are relatively low risk. An equal number of
high-risk defendants are thus released (because we hold fixed
the number of individuals detained), leading to an estimated
9% increase in violent recidivism among released defendants.
There are thus tangible costs to satisfying popular notions of
algorithmic fairness.

5 THE COST OF PUBLIC SAFETY

A decision rule constrained to satisfy statistical parity, condi-
tional statistical parity, or predictive equality reduces public
safety. However, a single-threshold rule that maximizes pub-
lic safety generally violates all of these fairness definitions.
For example, in the Broward County data, optimally detain-
ing 30% of defendants with a single-threshold rule means
that 39% of black defendants are detained, compared to 18%
of white defendants, violating statistical parity. And among
defendants who ultimately do not go on to commit a violent
crime, 14% of whites are detained compared to 31% of blacks,
violating predictive equality.

The reason for these disparities is that white and black
defendants in Broward County have different distributions
of risk, py|x, as shown in Figure 1. In particular, a greater
fraction of black defendants have relatively high risk scores,
in part because black defendants are more likely to have
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Figure 1: Top: distribution of risk scores for

Broward County data (left) and simulated data
(right). Simulated data is drawn from two beta dis-
tributions with equal means. Bottom: using a sin-
gle threshold of 30% violates statistical parity (as
measured by detention rate), predictive equality (as
measured by false positive rate), and conditional sta-
tistical parity (as measured by detention rate condi-
tional on number of prior arrests). We omit the
last measure for the simulated data since that would
require making additional assumptions about the re-
lationship of priors and risk in the hypothetical pop-
ulations.

prior arrests, which is a strong indicator of reoffending. Im-
portantly, while an algorithm designer can choose different
decision rules based on these risk scores, the algorithm can-
not alter the risk scores themselves, which reflect underlying
features of the population of Broward County.

Once a decision threshold is specified, these risk distribu-
tions determine the statistical properties of the decision rule,
including the group-specific detention and false positive rates.
In theory, it is possible that these distributions line up in
a way that achieves statistical parity or predictive equality,
but in practice that is unlikely. Consequently, any decision
rule that guarantees these various fairness criteria are met
necessarily deviates from the unconstrained optimum.

This inherent tension between maximizing public safety
and satisfying various notions of algorithmic fairness typically
persists even if the overall risk Pr(Y =1 | g(X) = g;) is the
same across groups g;. To demonstrate this phenomenon,
Figure 1 shows risk score distributions for two hypothetical
populations with equal average risk. Even though their means
are the same, the tail of the red distribution is heavier than
the tail of the blue distribution, resulting in higher detention
and false positive rates in the red group.

That a single decision threshold can, and generally does,
result in racial disparities is closely related to the notion
of infra-marginality in the econometric literature on taste-
based discrimination [3, 4, 30]. In that work, taste-based
discrimination [6] is equated with applying decision thresh-
olds that differ by race. Their setting is human, not algo-
rithmic, decision making, and so one cannot directly observe
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Figure 2: Recidivism rate by COMPAS risk score
and race. White and black defendants with the same
risk score are roughly equally likely to reoffend, in-
dicating that the scores are calibrated. The y-axis
shows the proportion of defendants re-arrested for
any crime, including non-violent offenses; the gray
bands show 95% confidence intervals.

the thresholds being applied; the goal is thus to infer the
thresholds from observable statistics. Though intuitively
appealing, detention rates and false positive rates are poor
proxies for the thresholds: these infra-marginal statistics
consider average risk above the thresholds, and so can differ
even if the thresholds are identical (as shown in Figure 1). In
the algorithmic setting, past fairness measures notably focus
on these infra-marginal statistics, even though the thresholds
themselves are directly observable.

6 DETECTING DISCRIMINATION

The algorithms we have thus far considered output a decision
d(z) for each individual. In practice, however, algorithms
like COMPAS typically output a score s(x) that is claimed
to indicate a defendant’s risk py|x; decision makers then
use these risk estimates to select an action (e.g., release or
detain).

In some cases, neither the procedure nor the data used to
generate these scores is disclosed, prompting worry that the
scores are themselves discriminatory. To address this concern,
researchers often examine whether scores are calibrated [24],
as defined by Eq. (4).'° Since the true probabilities Py |x
are necessarily calibrated, it is reasonable to expect risk esti-
mates that approximate these probabilities to be calibrated
as well. Figure 2 shows that the COMPAS scores indeed
satisfy this property. For example, among defendants who
scored a seven on the COMPAS scale, 60% of white defen-
dants reoffended, which is nearly identical to the 61% percent
of black defendants who reoffended.

However, given only scores s(x) and outcomes y, it is
impossible to determine whether the scores are accurate esti-
mates of py|x or have been strategically designed to produce

19Some researchers also check whether the AUC of scores is similar
across race groups [31]. However, the motivation for examining AUC
is not as clear, since the true risk distributions might simply have
different AUCs, a pattern that would be reproduced in scores that
approximate these probabilities.
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racial disparities. Hardt et al. [18] make a similar observation
in their discussion of “oblivious” measures. Consider a hy-
pothetical situation where a malicious decision maker wants
to release all white defendants, even if they are high risk.
To shield himself from claims of discrimination, he applies
a facially neutral 30% threshold to defendants regardless of
race. Suppose that 20% of blacks recidivate, and the decision-
maker’s algorithm uses additional information, such as prior
arrests, to partition blacks into three risk categories: low
risk (10% chance of reoffending), average risk (20% chance),
and high risk (40% chance). Further suppose that whites
are just as risky as blacks overall (20% of them reoffend),
but the decision maker ignores individual characteristics and
labels every white defendant average risk. This algorithm
is calibrated, as both whites and blacks labeled average risk
reoffend 20% of the time. However, all white defendants
fall below the decision threshold, so none are detained. By
systematically ignoring information that could be used to
distinguish between white defendants, the decision maker has
succeeded in discriminating while using a single threshold
applied to calibrated scores.

Figure 3 illustrates a general method for constructing
such discriminatory scores from true risk estimates. We
start by adding noise to the true scores (black curve) of
the group that we wish to treat favorably—in the figure
we use N(0,0.5) noise. We then use the perturbed scores
to predict the outcomes y; via a logistic regression model.
The resulting model predictions (red curve) are more tightly
clustered around their mean, since adding noise removes
information. Consequently, under the transformed scores, no
one in the group lies above the decision threshold, indicated
by the vertical line. The key point is that the red curve
is a perfectly plausible distribution of risk: without further
information, one cannot determine whether the risk model
was fit on input data that were truly noisy, or whether noise
was added to the inputs to produce disparities.

These examples relate to the historical practice of red-
lining, in which lending decisions were intentionally based
only on coarse information—usually neighborhood—in order
to deny loans to well-qualified minorities [9]. Since even
creditworthy minorities often resided in neighborhoods with
low average income, lenders could deny their applications
by adhering to a facially neutral policy of not serving low-
income areas. In the case of red-lining, one discriminates
by ignoring information about the disfavored group; in the
pretrial setting, one ignores information about the favored
group. Both strategies, however, operate under the same
general principle.

There is no evidence to suggest that organizations have
intentionally ignored relevant information when constructing
risk scores. Similar effects, however, may also arise through
negligence or unintentional oversights. Indeed, we found
in Section 4 that we could improve the predictive power
of the Broward County COMPAS scores with a standard
statistical model. To ensure an algorithm is equitable, it is
thus important to inspect the algorithm itself and not just
the decisions it produces.
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Figure 3: Calibration is insufficient to assess discrim-
ination. In the left plot, the black line shows the dis-
tribution of risk in a hypothetical population, and
the red line shows strategically altered risk estimates
in the same population. Both sets of risk scores are
calibrated (right plot), but the altered risk scores are
less informative and as a result guarantee that no de-
fendants fall above the detention threshold (dashed
vertical line).

7 DISCUSSION

Maximizing public safety requires detaining all individuals
deemed sufficiently likely to commit a violent crime, regard-
less of race. However, to satisfy common metrics of fairness,
one must set multiple, race-specific thresholds. There is thus
an inherent tension between maintaining public safety and
reducing racial disparities. This tension is real: by analyz-
ing data from Broward County, we find that optimizing for
public safety yields stark racial disparities; conversely, satis-
fying past fairness definitions means releasing more high-risk
defendants, adversely affecting public safety.

Policymakers face a difficult and consequential choice, and
it is ultimately unclear what course of action is best in any
given situation. We note, however, one important consider-
ation: with race-specific thresholds, a black defendant may
be released while an equally risky white defendant is de-
tained. Such racial classifications would likely trigger strict
scrutiny [16], the most stringent standard of judicial review
used by U.S. courts under the Equal Protection Clause of
the Fourteenth Amendment. A single-threshold rule thus
maximizes public safety while satisfying a core legal principle
of procedural justice, bolstering the case in its favor.

To some extent, concerns embodied by past fairness defini-
tions can be addressed while still adopting a single-threshold
rule. For example, by collecting more data and accordingly
increasing the accuracy of risk estimates, one can lower error
rates. Further, one could raise the threshold for detaining
defendants, reducing the number of people erroneously de-
tained from all race groups. Finally, one could change the
decision such that classification errors are less costly. For
example, rather than being held in jail, risky defendants
might be required to participate in community supervision
programs.

When evaluating policy options, it is important to consider
how well risk scores capture the salient costs and benefits of
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the decision. For example, though we might want to minimize
violent crime conducted by defendants awaiting trial, we
typically only observe crime that results in an arrest. But
arrests are an imperfect proxy. Heavier policing in minority
neighborhoods might lead to black defendants being arrested
more often than whites who commit the same crime [26].
Poor outcome data might thus cause one to systematically
underestimate the risk posed by white defendants. Risk scores
might similarly fail to accurately capture costs in specific,
idiosyncratic cases. Detaining a defendant who is the sole
caretaker of her children arguably incurs higher social costs
than detaining a defendant without children. Discretionary
consideration of individual cases might thus be justified,
provided that such discretion does not also introduce bias.
Further, the immediate utility of a decision rule might be
a poor measure of its long-term costs and benefits. For
example, in the context of credit extensions, offering loans
preferentially to minorities might ultimately lead to a more
productive distribution of wealth, combating harms from
historical under-investment in minority communities.

We further note that some decisions are better thought
of as group rather than individual choices, limiting the ap-
plicability of the framework we have been considering. For
example, when universities admit students, they often aim to
select the best group, not simply the best individual candi-
dates, and may thus decide to deviate from a single-threshold
rule in order to create diverse communities with varied per-
spectives and backgrounds [28].

Experts increasingly rely on algorithmic decision aids in
diverse settings, including law enforcement, education, em-
ployment, and medicine [5, 7, 17]. Algorithms have the
potential to improve the efficiency and equity of decisions,
but their design and application raise complex questions for
researchers and policymakers. By clarifying the implications
of competing notions of algorithmic fairness, we hope our
analysis fosters discussion and informs policy.
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