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Background: Reliable prognostic biomarkers are needed
for the early recognition of psychosis. Recently, multivari-
ate machine learning methods have demonstrated the feasi-
bility to predict illness onset in clinically defined at-risk
individuals using structural magnetic resonance imaging
(MRI) data. However, it remains unclear whether these
findings could be replicated in independent populations.
Methods: We evaluated the performance of an MRI-based
classification system in predicting disease conversion in at-
risk individuals recruited within the prospective FePsy
(Früherkennung von Psychosen) study at the University
of Basel, Switzerland. Pairwise and multigroup biomarkers
were constructed using the MRI data of 22 healthy volun-
teers, 16/21 at-risk subjects with/without a subsequent dis-
ease conversion. Diagnostic performance was measured in
unseen test cases using repeated nested cross-validation.
Results: The classification accuracies in the ‘‘healthy con-
trols (HCs) vs converters,’’ ‘‘HCs vs nonconverters,’’ and
‘‘converters vs nonconverters’’ analyses were 92.3%,
66.9%, and 84.2%, respectively. A positive likelihood ratio
of 6.5 in the converters vs nonconverters analysis indicated
a 40% increase in diagnostic certainty by applying the bio-
marker to an at-risk population with a transition rate of
43%. The neuroanatomical decision functions underlying
these results particularly involved the prefrontal perisylvian
and subcortical brain structures. Conclusions: Our findings
suggest that the early prediction of psychosis may be reliably
enhanced using neuroanatomical pattern recognition operat-
ing at the single-subject level. These MRI-based biomarkers
may have the potential to identify individuals at the highest
risk of developing psychosis, and thus may promote informed
clinical strategies aiming at preventing the full manifestation
of the disease.
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Introduction

Therapeutic action in the earliest phase of schizophrenia
and other psychoses may be the most beneficial strategy

to modify the subsequent clinical course of the affected

individuals,1 with the potential to alleviate symptom

burden and even prevent the manifestation of the frank
disorder.2–4 However, possible side effects and socioeco-

nomic impacts of preventive treatment in the at-risk

mental state for psychosis (ARMS) require therapeutic

decisions to be based on solid diagnostic grounds in order

to reliably target those individuals with the highest prob-
ability of developing an overt psychotic disease. Thus,

valid early recognition instruments are needed that are

capable of detecting subtle disease-associated signals at

the single-subject level across heterogeneous subclinical

populations. These instruments could provide an objec-
tive rationale for clinical decision making in the ARMS

and the prodromal phase of the disorder.
Recently, multivariate disease prediction algorithms

have emerged as a potential means to derive diagnostic
and prognostic decisions from different sets of clinical
and neurocognitive measures.5–8 These algorithms
may have the potential to increase the prediction ac-
curacy of the established, operationalized early recogni-
tion inventories from 9% to 54%9 to over 80%. However,
these clinical algorithms typically require a thorough
psychopathological assessment of subtle and thus diffi-
cult to ascertain signs and symptoms.10 Therefore, the
applicability of clinical prognostic tools largely depends
on skilled personnel working within a limited number of
highly specialized mental health care facilities. Hence,
biomarker-based early recognition tools may comple-
ment and extend the existing early detection strategies
by providing objective methods to evaluate the risk of
developing overt psychosis in vulnerable individuals.
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In this regard, Job et al11 were the first to assess the
feasibility of magnetic resonance imaging (MRI)-based
psychosis prediction in a genetically defined ARMS
population. They found that longitudinal gray matter
(GM) density reductions in the inferior temporal gyrus
predicted subsequent disease manifestation with a posi-
tive/negative predictive value of 60%/92%. However,
the delay of preventive treatment caused by the necessity
to perform repeated MRI scanning and the modest sen-
sitivity of the underlying methodology may limit the val-
idity of such biomarkers within a clinical real-world
scenario. In this context, neuroimaging-based multivari-
ate pattern recognition algorithms such as the support
vector machine (SVM) may surmount these limitations
as they have shown to reliably detect the subsequent
onset of different neurodegenerative disorders during
clinical and preclinical stages (see12 for review).

Our own previous work13 suggested that the diagnosis
of the ARMS and the prediction of subsequent disease
conversion could be achieved by means of nonlinear
MRI-based SVMs operating at the single-subject level.
In this regard, the most relevant clinical question is
whether the utility of this early detection approach could
be demonstrated in a second independent population at
risk of developing psychosis.

Materials and Methods

Study Design

This imaging study was embedded in the naturalistic pro-
spective and multidomain FePsy study on the prediction
of psychosis development in individuals with an ARMS,
covering a service area of 200 000 habitants in and
around Basel, Switzerland. A more detailed description
of the overall study design can be found elsewhere.14

All aspects of the study were reviewed and approved
by the institutional ethics committee of the University
of Basel and written informed consent was obtained
from each participant before study inclusion.

Participants

Within the prospective FePsy study, ARMS individuals
received a structural MRI scan at study inclusion. For
screening purposes, we used the Basel Screening Instru-
ment for Psychosis, BSIP,15 a 46-item checklist based on
variables which have been shown to be risk factors or
early symptoms of psychosis14,16 such as Diagnostic
and StatisticalManual ofMental Disorders, Third Edition,
Revised—‘‘prodromal symptoms,’’ social decline, drug
abuse, previous psychiatric disorders, or genetic liability
for psychosis. The BSIP checklist facilitates a reliable
identification of vulnerable individuals at risk of develop-
ing psychosis using clinical criteria that closely corre-
spond to the well-established ultra-high-risk definitions
of the Personal Assessment and Crisis Evaluation (PACE)

clinic in Melbourne.15–17 In keeping with previous
MRI studies of ARMS cohorts recruited using these
high-risk criteria (see18 for review), inclusion into the
present study required one or more of the following:
(1) attenuated psychotic-like symptoms, (2) brief limited
intermittent psychotic symptoms (BLIPS), or (3) a first-
or second-degree relative with a psychotic disorder plus
at least 2 further risk factors for or indicators of
beginning psychosis according to the BSIP screening in-
strument. Inclusion because of attenuated psychotic
symptoms required that change in mental state had to
be present at least several times a week and for more
than 1 week duration (a score of 2 or 3 on the Brief Psy-
chiatric Rating Scale (BPRS) hallucination item or 3 or
4 on BPRS items for unusual thought content or suspi-
ciousness). Inclusion because of BLIPS required scores of
4 or above on the hallucination item or 5 or above on the
unusual thought content, suspiciousness, or conceptual
disorganization items of the BPRS, with each symptom
lasting less than 1 week before resolving spontaneously.
A more detailed description of these ARMS criteria can
be found in our previous work.14 Additionally, (pre)psy-
chotic and negative symptoms were assessed with the
BPRS and the Scale for the Assessment of Negative
Symptoms (SANS), which were used in combination
with the BSIP.
Exclusion criteria were age below 18 years, insufficient

knowledge of German, IQ <70, previous psychotic epi-
sodes treated with major tranquillizers for more than
3 weeks, a clearly diagnosed brain disease or substance
dependency (except for cannabis dependency), or psy-
chotic symptoms within a clearly diagnosed depression
or borderline personality disorder. Thirty-three of 37
ARMS individuals never received antipsychotic medica-
tion prior to MRI scanning. Four participants had been
administered low doses of atypical antipsychotic medica-
tion for behavioral control by the referring psychiatrist
or general practitioner (3 participants olanzapine and
1 risperidone) at some time prior to study inclusion, all
for less than 3 weeks.
Twenty-two healthy controls (HCs) were recruited

from the same geographical area as the ARMS group
through local advertisements and were matched to the
ARMS sample groupwise for age, gender, handedness,
and education level (table 1). These individuals had no
current psychiatric disorder, no history of psychiatric
illness, head trauma, neurological illness, serious medical
or surgical illness, and substance dependency (except for
cannabis and nicotine), and no family history of any psy-
chiatric disorder as assessed by an experienced psychia-
trist in a detailed clinical interview.
Study inclusion started in March 1, 2000 and contin-

ued until February 29, 2004. During the first year of
follow-up, ARMS individuals were assessed monthly.
During the second and third year, all individuals were
assessed every 3 months and thereafter once a year until
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conversion to frank psychosis or until the end of the fol-
low-up period in 2007. All subjects were followed-up reg-
ularly andwere offered supportive counseling and clinical
management. Conversion to frank psychosis was moni-
tored using the criteria described by Yung et al17:
BPRS scores of 4 or above on the hallucination item
or scores of 5 or above on the unusual thought content,
suspiciousness, or conceptual disorganization items.
Symptoms had to occur daily and persist for more
than 1 week to be deemed a conversion to frank psycho-
sis. Using these definitions, the ARMS group was subdi-
vided into 21 nonconverters (ARMS-NT) and 16
converters (ARMS-T) to psychosis.

MRI Data Acquisition

Subjects were scanned using a SIEMENS (Erlangen,
Germany) MAGNETOM VISION 1.5T scanner at the
University Hospital Basel. Head movement was mini-
mized by foam padding and velcrostraps across the fore-
head and chin. A 3-dimensional volumetric spoiled
gradient recalled echo sequence generated 176 contigu-
ous, 1 mm thick sagittal slices. Imaging parameters

were time-to-echo, 4 msec; time-to-repetition, 9.7 msec;
flip angle, 12; matrix size, 200 3 256; field of view, 25.6
3 25.6 cm matrix; and voxel dimensions, 1.28 3 1 3 1 mm.

MRI Data Preprocessing

After inspection for artifacts and gross abnormalities the
images were segmented into GM, white matter (WM),
and cerebrospinal fluid (CSF) maps in native space using
the VBM5 toolbox (http://dbm.neuro.uni-jena.de), an
extension of the SPM5 software package (Wellcome
Department of Cognitive Neurology, London, UK).
Details of this segmentation protocol have been described
in our previous work.13 Then, the estimated tissue maps
of each individual were combined into a single-labeled
volume (CSF: 10, GM: 150, andWM: 250) and registered
to the single-subject brain template of Montreal
Neurological Institute using a well-established high-
dimensional elastic warping algorithm.19 The volumetric
changes occurring during this normalization process were
written out to the registered tissue maps allowing for
a Regional Analysis of Volumes in Normalized Space
(RAVENS). Similar to the ‘‘modulation’’ step used in

Table 1. Sociodemographic, Clinical, and Global Anatomical Characteristics of the 3 Study Groups

Study Groups

ARMS-T ARMS-NT HC P

Sociodemographic variables

N 16 21 22
Mean age at baseline, y (SD) 26.4 (6.5) 23.4 (6.0) 23.0 (4.3) ns

Sex (male), n (%) 11 (69) 11 (52) 13 (59) ns

Handedness (mixed or left), n (%) 3 (19) 1 (5) 6 (29) ns

Educational level ns

<9 y, n (%) 4 (25) 7 (35) 2 (9)

9–11 y, n (%) 6 (38) 8 (39) 7 (32)

12–13 y, n (%) 5 (31) 3 (13) 10 (46)

>13 y, n (%) 1 (6) 3 (13) 3 (14)

Mean verbal IQ (Mehrfach-Wortschatztest-B) (SD) 109.6 (12.6) 107.6 (15.4) — ns

Clinical variables

Individuals with a first degree relative
with schizophrenia

3 (19%) 3 (14%) na ns

Mean BPRS global score at intake (SD) 41.9 (10.6) 37.2 (7.1) na ns

Mean SANS at intake (SD) 9.5 (5.4) 6.8 (4.4) na ns

Mean duration of symptoms, mo (SD) 42.6 (39.5) 43.2 (53.7) na ns

Mean interval between baseline MRI
scan and disease transition, d (SD)

306.3 (318.3) na na

Global anatomical volumes

Mean global gray matter volume, ml (SD) 680.5 (57.5) 680.3 (67.4) 692.2 (52.6) ns

Mean global white matter volume, ml (SD) 613.0 (79.9) 601.3 (72.3) 615.2 (68.7) ns

Mean global cerebrospinal fluid volume, ml (SD) 212.6 (36.8) 212.0 (26.2) 204.8 (30.9) ns

Note: ARMS-T, at-risk mental state for psychosis-converters; ARMS-NT, at-risk mental state for psychosis-nonconverters; HC,
healthy control; BPRS, Brief Psychiatric Rating Scale; SANS, Scale for the Assessment of Negative Symptoms; MRI, magnetic
resonance imaging.
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voxel-based morphometry, RAVENS maps allow for lo-
cal comparisons in standard space that are equivalent to
volumetric comparisons of the original tissue maps in na-
tive space. The individual GM-RAVENSmaps were pro-
portionally scaled to the global GM volume computed
from the native tissue maps and entered the susequent
multivariate pattern classification analysis.

Multivariate Pattern Classification Analysis

SVM are multivariate statistical methods that have been
increasingly employed for diagnostic purposes in a wide
range of biomedical applications because they provide
optimal decision rules for classifying individuals rather
than describing statistical between-group differences.
In our case, neuroanatomical features were used by the
SVM to determine the best nonlinear classification model
that reliably predicted the study participants’ group
membership. As customary in predictive analytics, the
SVM models were constructed from one set of subjects
(the training sample) and applied to a different set of sub-
jects (the test sample) using cross-validation (CV). This
process produced an unbiased estimate of the method’s
expected diagnostic accuracy on new individuals rather
than merely fitting the current study population. The
principles of generating and validating predictive models
on separate training and testing samples have been pre-
viously described.13 Based on the LIBSVM software
(http://www.csie.ntu.edu.tw/cjlin/libsvm/), our machine-
learning pipeline produced compact ensembles of SVMs
that optimally separated single individuals from different
groups, while avoiding the danger of overfitting to the
peculiarities of the training data. It consisted mainly of
3 successive steps that were wrapped into a repeated
nested CV framework (see online supplementary material
for Methods)

Neuroanatomical Feature Generation. First, each train-
ing sample’s GM-RAVENS maps were adjusted for age
and gender effects using partial correlations and scaled
voxel-wise to the range (0,1). These scaled and adjusted
maps entered a recently proposed multivariate filter
method,20 which automatically determined those sets of
voxels that conjointly maximize the geometric distance
between the training subjects in the HC vs ARMS-T,
HC vs ARMS-NT, and ARMS-T vs ARMS-NT analyses.
This algorithm removed irrelevant/unreliable voxels
from the high-dimensional MRI input space that did
not contribute to the respective binary classification
problem. Then, correlated voxels within the extracted
discriminative patterns were projected to a number of
uncorrelated principal components (PC) using principal
component analysis (PCA).13 This further reduced the
dimensionality of the discriminative patterns to compact
sets of neuroanatomical features. The optimum number
of PCwas determined using CV (see online supplementary
material for Methods).

SVM Training. These discriminative PC features were
projected to a high-dimensional feature space using the
radial basis functions in order to account for possible
nonlinear relations between the training subjects’ neuro-
anatomical features and their group membership. In this
feature space, the SVM found the optimal between-group
boundary by maximizing the geometric distance between
the neuroanatomically most similar subjects of opposite
groups (the ‘‘support vectors’’).21 It has been shown that
this maximum margin principle in conjunction with the
nonlinear projection generates classification rules that
are adaptive to subtle between-group differences and
therefore generalize well to unseen individuals.21

Classification of Unseen Test Data. The group member-
ship of unseen test subjects was predicted after applying
all training parameters successively to their MRI data,
including (1) the adjustment for age and gender effects,
(2) the selection of optimally discriminative voxels, (3)
the projection of these voxels to PC, and (4) the nonlinear
transformation of these neuroanatomical features. Then,
for each subject, the 3 trained binary SVMmodels (HC vs
ARMS-T, HC vs ARMS-NT, and ARMS-T vs ARMS-
NT) determined its geometric position relative to their
learned decision boundaries, resulting in 3 decision values
and group membership predictions. We used these deci-
sion values to construct a multigroup classifier (HC vs
ARMS-T vs ARMS-NT), where the binary SVM model
with the maximum decision value decided about the
test subject’s group membership (one-vs-one-max-wins
method).
Feature generation, model training, and test subject

prediction were wrapped into a repeated nested CV
framework (see online supplementary material for
Methods).22 The main goal of this framework was to
completely separate the process of estimating the
SVMs’ prediction performance in a large number of un-
seen validation samples (outer CV loop) from the process
of constructing optimally discriminative SVM models
from a large number of training samples (inner CV
loop). On the outer CV loop, we performed 10 repetitions
of the following CV cycle. First, the order of the subjects
was permuted within each group, and the entire popula-
tion was split into 10 nonoverlapping samples. Each of
these samples was iteratively held back as validation
data, while the 9 remaining samples entered the inner
CV loop as the training data. At this inner loop, we
used 10-fold CVwith 10 repetitions to generate ensembles
of SVM models. More specifically, for each validation
sample at the outer CV level, 100 different training
data partitions were created at the inner CV level. In
each of these 100 training partitions, the most discrimi-
native sets of neuroanatomical features were determined.
Each of these sets was used to train a separate SVM
model. Then, each of these models predicted the group
membership of the unseen validation subjects on the
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outer loop. These predictions were averaged across all 100
training partitions to yield an ensemble decision. Finally,
for each validation subject, all SVM ensemble decisions
were aggregated across those outer training partitions,
in which this subject had not been involved in the training
process. Majority voting was used to determine the valida-
tion subject’s class probability, and thus its final out-of-
training group membership (tables 2 and 3).
This ensemble learning approach leads to robust clas-

sification results because it greatly reduces the risk of un-
fortunate selections of poorly performing single
classifiers by averaging the diagnostic decisions of nu-
merous predictive models. Furthermore, ensembles of
predictive models have shown to improve classification
performance particularly in small sample situations be-
cause they detect complex decision boundaries by means
of training sample and training parameter variation.22

The performance of these classifier ensembles on the un-
seen validation data was measured in terms of sensitivity,
specificity, balanced accuracy (BAC), false positive rate,
positive/negative predictive values, and positive/negative
likelihood ratios.
The nonlinearity of the decision rules determining the

test subjects’ group membership made it difficult to di-
rectly visualize each voxel’s contribution to the average
SVM ensemble decision. Therefore, we first approxi-
mated the average neuroanatomical decision boundary
used by the binary nonlinear SVM models as described
in Koutsouleris et al13 and then measured each voxel’s
probability of reliably contributing to this discriminative
pattern across the entire experiment at the 95% CI. The
exact visualization procedure has been detailed in the leg-
end of figure 1. Moreover, a supplementary parcellation
analysis (see online supplementary material for figure 1)
was conducted in order to measure the distribution of
reliably discriminative voxels across the 116 brain
regions of the AAL template (Automated Anatomical

Labeling23). Finally, the similarities and differences
between the approximated neuroanatomical decision
boundaries underlying the 3 binary SVM classifiers
were qualitatively assessed in online supplementary
material, figure 3.

Results

Sociodemographic, Clinical, and Global Anatomical
Findings

The rate of conversion to psychosis was 43.2% in our
ARMS sample of 37 individuals with MRI scan at base-
line. The mean interval between baseline scan and disease
conversion scan was 306 days (median: 263, range:
25–1137 days). HCs, subsequent converters, and non-
converters did not significantly differ with respect to
age, gender, educational level, and global brain volumes
(table 1). Furthermore, no significant baseline differences
were found between the ARMS-NT and ARMS-T sam-
ples regarding verbal IQ, family history of psychosis,
duration of symptoms prior to the MRI examination,
BPRS, and SANS (table 1). A trend toward amore severe
baseline psychopathology (BPRS) was detected in the
conversion compared with the nonconversion sample.

SVM Classification Analysis

Classification Performance. Among the 3 binary classi-
fication analyses (table 2), the highest diagnostic perfor-
mance (BAC = 92.3%) was observed in theHC vsARMS-
T comparison, where 1 ARMS-T individual was classi-
fied as HC and 2 HC subjects were assigned to the
ARMS-T group (sensitivity = 93.8% and specificity =
90.9%). The lowest SVM performance was detected in
the HC vs ARMS-NT analysis (BAC = 66.9%) as 12
ARMS-NT were wrongly assigned to the HC group, and
2 HC were classified as ARMS-NT (sensitivity = 42.9%

Table 2. Two-Group Classification Performance

Binary Classifiers TP TN FP FN Sens (%) Spec (%) BAC (%) FPR (%) PPV (%) NPV (%) LRþ LR�

HC vs ARMS-T 20 15 1 2 93.8 90.9 92.3 6.3 95.2 88.2 10.3 0.1

HC vs ARMS-NT 30 9 12 2 42.9 90.9 66.9 57.1 62.5 81.8 4.7 0.6

ARMS-T vs ARMS-NT 14 17 4 2 81.0 87.5 84.2 19.1 77.8 89.5 6.5 0.2

Note: Sens, Sensitivity; Spec, specificity; BAC, balanced accuracy; FPR, false positive rate; PPV/NPV, positive/negative predictive
values; LRþ/LR�, positive/negative Likelihood Ratios; true positives (TP), false negatives (FN), true negatives (TN), and false
positives (FP); SVM, support vector machine; CV, cross-validation.
Note: Sens, Spec, BAC, FPR, PPV/NPV, and LRþ/LR� were calculated from the confusion matrix containing the number of TP, FN,
TN, and FP.
Note: The performance of the binary SVM ensemble classifiers (group ‘‘þ1’’ vs group ‘‘�1’’) was evaluated (1) by constructing a binary
SVM ensemble from all SVM base learners of an inner CV partition, in which the respective outer CV test subjects had not been
included, (2) by computing the average decision value in each of these binary inner CV ensembles in order to determine the group
membership (average decision value > 0 or < 0) of the respective outer CV test subjects, and (3) through majority voting across those
binary inner CV loop SVM ensembles, in which the outer CV test subjects had not participated in the training process (see also the
Methods section for a detailed explanation of the employed ensemble learning framework).
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and specificity = 90.9%). In the critical ARMS-T vs
ARMS-NT analysis, the BAC was BAC = 84.2%, with 4
ARMS-NT individuals being misclassified as ARMS-T
and 2 ARMS-T being wrongly labeled as ARMS-NT (sen-
sitivity = 81.0% and specificity = 87.5%). Thus, the likeli-
hood ratio of a positive test result was LRþ = 0.81/
(10.875) = 6.5, meaning that a positive prognostic test in
a given ARMS subject would increase the probability of
subsequent disease conversion from 43% (pretest prob-
ability: 16/37 = 0.43) to 83% (posttest probability: pretest
odds3LRþ = 0.7623 6.5 = 4.94/ 4.94/(4.94þ 1) = 0.83).

In the 3-group classification (table 3), all 22 HC individ-
uals were correctly assigned to their group, while 6 of the
16 ARMS-T and 11 of the 21 ARMS-NT subjects were
misclassified as HC (sensitivity = 100%, specificity =
54.1% and BAC = 77.1%). Of the 16 ARMS-T subjects,

10 were correctly assigned to their group, while 1
ARMS-NT individual was wrongly labeled as ARMS-T
(sensitivity = 62.5%, specificity = 97.7%, and BAC =
80.1%). Nine of 21 ARMS-NT individuals were correctly
identified by the pattern recognition system, and noHCor
ARMS-T subject was misclassified as ARMS-NT (sensi-
tivity = 42.9%, specificity = 100%, and BAC = 71.4%). The
misclassified ARMS-T and ARMS-NT individuals did
not significantly differ from the correctly labeled
ARMS-T andARMS-NT subjectswith respect to the soci-
odemographic, clinical, and global anatomical variables
(table 4).

Neuroanatomical Mapping of SVM Decision Functions.
In summary, the approximation of the 3 neuroanatomical
SVM decision functions (methodological descriptions in
figure 1) revealed that reliable voxels were not confined
to single brain regions but instead were distributed across
a broad range of cortical and subcortical areas. Within
these distributed patterns shown in figures 1–3, foci of
high-probability voxels (>80% probability) were detected
particularly in the prefrontal, parietal, temporal, thalamic,
and cerebellar structures.
More specifically, the average neuroanatomical deci-

sion function of the HC vs ARMS-T ensemble classifier
involved high-probability hotspots particularly in the
right hemisphere (1) within the prefrontal cortex, includ-
ing the right and left ventrolateral and rostral prefrontal,
the right lateral orbitofrontal subregions, as well as the
right Rolandic operculum; (2) the right anterior insula;
(3) the medial and lateral parietal cortex; as well as (4)
the basal ganglia, thalamus, and cerebellum.
Clusters of contiguous high-probability voxels in-

volved in the average HC vs ARMS-NT ensemble deci-
sion were detected predominantly (1) in the midline
structures, bilaterally covering the anterior, middle,
and posterior parts of the cingulate cortex with exten-
sions to the ventromedial and dorsomedial prefrontal
cortices, the premotor and supplementary motor areas,
as well as the medial parietal cortices and (2) the inferior
temporal and fusiform cortices, bilaterally.
Reliable high-probability voxels contributing to the

average ARMS-T vs ARMS-NT ensemble decision
mainly mapped to (1) the dorsomedial, rostromedial,
and cingulate cortex, bilaterally, with extensions to the
medial orbitofrontal, precuneal, and premotor areas;
(2) the dorsolateral prefrontal GM andWM; (3) the right
parahippocampal and inferior temporal cortex; as well as
(4) the thalamus, bilaterally.

Application of the Classification Method to the Munich
High-Risk Cohort. A supplementary analysis (see
online supplementary material for table 1 and figure 2)
was carried out in order (1) to compare the performance
of our pattern recognition strategy between the FePsy
and the Munich high-risk populations and (2) to validate

Table 3. Three-Group Classification Performance

SVM-Predicted Classes

HC ARMS-T ARMS-NT

Clinical groups

HC 22 0 0

ARMS-T 6 10 0

ARMS-NT 11 1 9

OOT-Performance

TP 22 10 9

TN 20 42 38

FP 17 1 0

FN 0 6 12

Sensitivity (%) 100 62.5 42.9

Specificity (%) 54.1 97.7 100

Balanced accuracy (%) 77.1 80.1 71.4

False positive rate (%) 46.0 2.3 0

Positive predictive value (%) 56.4 90.9 100

Negative predictive value (%) 100 87.5 76.0

Note: SVM, support vector machine; ARMS-T, at-risk mental
state for psychosis-converters; ARMS-NT, at-risk mental state
for psychosis-nonconverters; HC, healthy control; TP, true
positive; TN, true negative; FP, false positive; FN, false
negative; OOT, out-of-training; CV, cross-validation.
Note: Multigroup decisions were obtained by (1) constructing
a multigroup ensemble classifier for each CV2 data partition
using error-correcting output codes (see ‘‘Materials and
Methods’’ section and online supplementary material) and by
(2) computing the final OOT group membership of a given CV2
test subject through majority voting of all CV2 multigroup
ensemble classifiers, in which this test subject had not been part
of the training data and thus had not been seen by these
classifier ensembles. The OOT classification performance of the
multigroup ensembles was then evaluated for one group against
all other groups. For example, in the HC vs ARMS-T vs
ARMS-NT analysis 22 HC subjects of 22 (sensitivity: 100%)
were correctly assigned to their group, while of 20 of 37 (54.1%)
ARMS subjects were correctly not labeled as HC, resulting in
a balanced accuracy of (100% þ 54.1%)/2 = 77.1%.
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Fig. 1. Voxel probability map of reliable contributions to the healthy control vs at-risk mental state for psychosis-converters (ARMS-T)
decisionboundary.Theapproximationof eachvoxel’s contribution to the averagenonlinear classificationused to separateHCfromARMS-
T subjects was obtained as follows: In principal component analysis space, the average minimum difference vector (SVmindiff) across the
support vectors of a given support vector machine model was computed and projected back to voxel space as described previously.13 This
computation was performed for every training sample on the inner cross-validation (CV) loop resulting in 100 SVmindiff images for a given
training partition on the outer CV loop. The average and SE volumes of these 100 SVmindiff images were computed. For every outer CV
partition, theaverageSVmindiff imagewasbinarized in thatvoxelswithanabsolutevaluegreater thantheir respectivestandarderrorwereset to
one or to zero otherwise. This thresholding procedure extracted only those voxels that reliably contributed to the average neuroanatomical
decision boundary of a given outer CV partition at the 95%CI. The obtained binary images were summed across all 100 outer CV partitions
anddividedby100, thus forming a singlemap that specified every voxel’s probability of reliably contributing to the average neuroanatomical
decisionboundaryacross theentire experiment.Voxelswithaprobabilityof>50%wereoverlaidon the single-subjectMontrealNeurological
Institute template using the MRIcron software package (http://www.sph.sc.edu/comd/rorden/mricron/).
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our current approach with respect to our previous meth-
ods.13 Therefore, we applied the identical parameter
setup as employed in the analysis of the FePsy data in
order to classify the Munich high-risk cohort, which con-
sisted of 17 converters and 17 nonconverters to psychosis.

Our current machine learning strategy produced high-
er sensitivity (82.4%), specificity (94.1%), and BAC
(88.2%) values compared with our previous findings13

(see online supplementary material for table 1). These
higher performance measures are mainly due to several
methodological improvements that are detailed in the
online supplementary Methods, including the use of
a novel local learning-based feature selection strategy
and the application of ensemble learning principles.

Discussion

The present investigation largely replicated our previous
findings13 in that our fully automated classification sys-
tem reliably identified those individuals among a clini-
cally defined at-risk population who subsequently
developed psychosis by using only their MRI scans
acquired at study inclusion. This observation agrees
with recent studies outlining the good performance of
MRI-based pattern recognition techniques in (1) cor-
rectly classifying patient populations with established

neuropsychiatric illnesses, such as Alzheimer’s Disease24

or schizophrenia25 and (2) predicting clinical outcome in
different neuropsychiatric conditions, including dys-
lexia,26 major depression,27 and mild cognitive impair-
ment.28 This growing transnosological literature
provides evidence that pattern recognition methods
may indeed have the potential to delineate neuroanatom-
ical intermediate phenotypes that constitute disease sig-
natures beyond the level of coarse between-group
differences.29

Neuroanatomical Basis of Prediction

Therefore, the main property of the SVM, which is its
ability to detect subtle and distributed, but highly dis-
criminative patterns of neuroanatomical differences,
makes this method relevant for an early recognition of
psychosis. Several previous imaging studies of clinically
defined ARMS cohorts have demonstrated focal GM
volume reductions across a wide range of brain regions
with a particularly reliable involvement of the lateral pre-
frontal, anterior cingulate, temporoparietal, limbic, and
paralimbic cortices (see ref. 18 for review). Furthermore,
the recent voxel-based meta-analysis of Fusar-Poli et al30

showed that conversion to overt psychosis may be asso-
ciated with further structural alterations located pri-
marily in the right ventrolateral prefrontal, insular,

Table 4. Misclassification Analysis

ARMS-T /
HC

ARMS-T /
ARMS-T P

ARMS-NT /
HC

ARMS-NT /
RMS-NT P

Sociodemographic variables

N 6 10 11 9

Mean age at baseline, y (SD) 26.5 (5.6) 26.4 (7.3) ns 23.0 (6.2) 24.4 (6.3) ns

Sex (male), n (%) 6 (100) 5 (50) ns 4 (44.4) 5 (55.6) ns

Handedness (mixed or left), n (%) 2 (33.3) 1 (10) ns 0 (0) 0 (0) na

Educational level ns ns

<9 y, n (%) 2 (33.3) 2 (20) 5 (45.5) 1 (11.1)

9–11 y, n (%) 3 (50.0) 3 (30) 4 (36.4) 4 (44.4)

12–13 y, n (%) 1 (16.7) 4 (40) na 3 (33.3)

>13 y, n (%) na 1 (10) 2 (18.2) 1 (11.1)

Clinical variables

Mean BPRS global score at intake (SD) 39.3 (11.2) 43.5 (10.6) ns 36.6 (7.1) 36.1 (5.5) ns

Mean SANS at intake (SD) 8.8 (6.2) 9.9 (5.3) ns 5.6 (4.4) 7.8 (4.5) ns

Mean duration of symptoms, mo (SD) 38.2 (26.8) 45.6 (47.5) ns 55.1 (66.9) 31.2 (36.5) ns

Mean interval between baseline MRI
scan and disease transition, d (SD)

427.5 (483.6) 245.75 (215.4) ns

Global anatomical volumes

Mean global gray matter volume, ml (SD) 693.0 (34.1) 672.9 (68.5) ns 677.1 (79.5) 679.0 (56.3) ns

Mean global white matter volume, ml (SD) 613.8 (54.3) 612.5 (94.8) ns 599.6 (79.5) 609.4 (69.0) ns

Mean global cerebrospinal fluid volume, ml (SD) 209.8 (31.8) 213.4 (24.0) ns 203.3 (30.9) 227.1 (41.7) ns

Note: Abbreviations are explained in the first footnote to table 1.
Note: Sociodemographical, clinical, and global anatomical characteristics of wrongly vs correctly classified converters and wrongly vs
correctly classified nonconverters were compared using nonparametric Mann-Whitney U-tests.
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and superior temporal cortices. Obtained from 2 com-
pletely independent ARMS populations, our present
and previous13 SVM-based results were partly consistent
with these meta-analytic observations, in so far as volu-
metric alterations involving the prefrontal, temporal, lim-
bic, and thalamic structures reliably contributed to the
neuroanatomical separation of nonconverters from con-
verters to psychosis (figure 3). However, the discrimina-
tive patterns underlying all 3 classification analyses may
suggest that the vulnerability and prodromal state for
psychosis do not relate to a circumscribed set of few
highly relevant structures. Instead, our results seem to
involve complex patterns of structural brain alterations
that conjointly produce predictive intermediate pheno-
types of the ARMS and the emerging illness. This finding
agrees with the literature of morphometric changes
in schizophrenia,31 which suggests that the disease pa-
thology is not confined to single brain regions, but rather
spans distributed cortical and subcortical neural net-
works, in keeping with the current disconnection hypoth-
esis of schizophrenia.32

Early Recognition of Psychosis Using MRI-Based
Methods

The sociodemographic and clinical characteristics of our
ARMS population are in keeping with other at-risk
cohorts recruited at different specialized early recognition
services around theworld, including eg, thePACEclinic in
Melbourne,33 the TOPP clinic in Norway,34 the FETZ
service inMunich,13,35or themulticentricNorthAmerican
Prodrome Longitudinal Study.5 In the context of these
samples, our study population, albeit modest in size due
to the well-known difficulties of recruiting and prospec-
tively following at-risk individuals over time, may be
regarded as being representative of a clinically defined
risk for psychosis.
Disease conversion rates in these clinically ‘‘enriched’’

at-risk samples may vary between 9% and 54%.9,36 There-
fore, the current symptom-based early recognition in-
ventories perform well in recruiting samples with a
significantly higher psychosis prevalence compared
with the baseline population risk of 0.5–1%, but unfortu-
nately, they do not provide the clinical means needed to
reliably differentiate between true prodromal subjects
and ‘‘false alarms’’ at the individual level. This diagnostic
separation is required in order to administer preventive
treatment to those at highest risk of developing psychosis,
while minimizing harmful medication effects in individ-
uals with a lower likelihood of disease conversion. In
this regard, different approaches have been proposed
in order to improve prognostic power within these clin-
ical high-risk samples, including (1) multivariate clinical
prediction models, which have shown to produce high
levels of diagnostic performance (>80%),5,8 (2) neurocog-
nition-based machine learning methods correctly predict-

ing psychosis in >85% of the cases,22 and (3) diagnostic
models combining neurocognitive and clinical data with
a prognostic accuracy of 80%.6,37

Despite these encouraging results, several drawbacks
of early recognition instruments based exclusively on
clinical/behavioral signs and symptoms have to be con-
sidered: (1) their limited availability because only contin-
uously trained personnel working at highly specialized
mental health services will achieve the level of sensitivity
and specificity needed to reliably detect the subtle and
subclinical phenotypes of at-risk individuals, (2) the af-
fected subjects’ varying degree of motivation and insight
as well as the interaction of personal and cultural back-
grounds occurring during the clinical examination, which
may bias the predictions of a diagnostic test. Therefore,
clinical detection strategies could be further enhanced by
means of objective imaging biomarkers capable of mea-
suring the pathophysiological processes associated with
emerging psychosis.38

In this regard, we detected high cross-validated diag-
nostic performances (tables 2 and 3) in the pairwise
ARMS-T vs HC (BAC = 92.3%) and ARMS-T vs
ARMS-NT (84.2%) classification analyses as well as in
the multigroup ARMS-T vs rest comparison (80.1%).
However, with respect to our previous results,13 diagnos-
tic performances were lower in the pairwise HC vs
ARMS-NT (66.9%) and the multigroup ARMS-NT vs
rest (71.4%) analyses, mainly due to 57% nonconverters
in the former and 52% in the later comparison being mis-
classified as HC. Based on the long follow-up period of
our study and the diffuse discriminative pattern observed
in the ARMS-NT vs HC analysis (figure 2), this low clas-
sification performance suggests that the nonconversion
sample may represent a heterogeneous help-seeking
population that lacks an overarching neuroanatomical
signature and hence cannot be reliably separated from
the HC group. In the light of the findings obtained
in our misclassification analysis (table 4), it remains to
be elucidated how this neuroanatomical heterogeneity
relates to a phenotypical heterogeneity within this group.
Therefore, future prospective studies following larger
nonconversion samples over time are needed in order
to answer the question whether the coarse definition of
‘‘nonconversion’’ should be further disentangled accord-
ing to the varying degree of mental and functional distur-
bances encountered in these subjects.39 In this regard, the
potentially heterogeneous neurobiology of these mental
alterations may be better captured based on a clinical
staging model of psychosis, as recently prosposed.40

In the light of these findings, the most promising early
recognition strategy seems to consist of a 2-step diagnos-
tic process. First, potential at-risk individuals are
screened for patterns of clinical/behavioral items that
meet the prodromal criteria of operationalized early rec-
ognition inventories. A positive test result at this stage
would mark a significantly higher risk for psychosis
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compared with the normal risk level—in our case, 43%
compared with 0.5–1% in the general population.
Then, the at-risk subject’s probability of disease conver-
sion would be further evaluated using a trained MRI-
based pattern recognition system, which in our study

achieved a clinically relevant positive likelihood ratio
of >5, thus increasing prognostic certainty from 43%
to 83% in case of a positive test result.
Despite the potential clinical utility of such a 2-level

early recognition instrument, we have to consider several

Fig. 2.Voxel probabilitymapof reliable contributions to thehealthy control vs at-riskmental state forpsychosis-nonconverters (ARMS-NT)
decision boundary. See legend of figure 1.
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potential limitations of the proposed strategy. First, it
remains unknown, how well our MRI-based early detec-
tion would work in clinically defined ARMS populations
with a substantially lower conversion rate, as reported
in recent studies from the PACE clinic.36 Second, con-

comitant substance abuse, in particular cannabis, as
well as the intake of antipsychotic medication increas-
ingly encountered in at-risk individuals may likely impact
on brain structure and interact with the pathophysiolog-
ical process leading to the full onset of the disease.41

Fig. 3. Voxel probability map of reliable contributions to the at-risk mental state for psychosis-converters (ARMS-T) vs nonconverters
(ARMS-NT) decision boundary. See legend of figure 1.
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Hence, an important direction for future studies is to
examine the ability of pattern recognition approaches
to accurately predict disease conversion in such real-
world high-risk populations. Third, as the generalization
capacity of the proposed diagnostic method is still
unclear, the next important research step is to evaluate
its predictive performance in significantly larger
ARMS cohorts recruited and examined across multiple
centers and scanners and followed over a long period.
Finally, the diagnostic specificity of the method needs
to be assessed in subclinical populations at risk for devel-
oping different neuropsychiatric conditions, not only
including schizophrenic psychosis but also bipolar
disorder, major depression, or borderline personality
disorder.

Supplementary Material

Supplementary material is available at http://
schizophreniabulletin.oxfordjournals.org.
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