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Abstract: Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and
cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the
disease, and that the capacity of functional integration between brain areas is decreased. In this study
we questioned (i) which brain areas underlie the loss of network integration properties observed in the
pathology, (ii) what is the topological role of the affected regions within the overall brain network and
how this topological status might be altered in patients, and (iii) how white matter properties of tracts
connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique
sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and
15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis
confirmed that patients present disrupted integration and segregation properties. The nodal analysis
allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and
peripheral areas. To characterize the topological role of this affected core, we investigated the brain
network shortest paths layout, and quantified the network damage after targeted attack toward the
affected core. The centrality of the affected core was compromised in patients. Moreover the connectiv-
ity strength within the affected core, quantified with generalized fractional anisotropy and apparent
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diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alter-
ations and topological decentralization of the affected core might be major mechanisms underlying the
schizophrenia dysconnectivity disorder. Hum Brain Mapp 36:354–366, 2015. VC 2014 Wiley Periodicals, Inc.
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imaging; schizophrenia; connectome
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INTRODUCTION

Schizophrenia is a major psychiatric disorder character-
ized by disabling positive, negative, and cognitive symp-
toms. According to the dysconnectivity hypothesis [Friston

and Frith, 1995], distributed alterations of brain connectiv-
ity patterns, and abnormal functional integration between
distinct brain areas could underlie the symptoms observed
in the pathology [Stephan et al., 2006, 2009]. Indeed a
remarkable number of studies based on magnetic reso-

nance imaging (MRI) highlighted morphological [Glahn
et al., 2008; Honea et al., 2005] and connectivity [Fitzsim-
mons et al., 2013; Pettersson-Yeo et al., 2011] disturbances
of distributed brain regions, with particular involvement

of frontal, parietal, and temporal cortices, subcortical struc-
tures, bilaterally but more predominantly on the left hemi-
sphere [Bora et al., 2011; Canu et al., 2014; Ellison-Wright
and Bullmore, 2009; Shepherd et al., 2012].

The connectome framework [Hagmann Patric, 2005;
Sporns et al., 2005] describes the brain connectivity net-
work in terms of graph measures, and therefore, proves to
be ideally suited for the investigation of a dysconnectivity
disease like schizophrenia [Bullmore and Sporns, 2009; Fil-
ippi et al., 2013; Guye et al., 2010]. Particularly, this frame-
work allows quantifying and comparing network
integration and segregation properties that underlie dis-
tributed information processing and functional specializa-
tion [Bullmore and Bassett, 2011; Meskaldji et al., 2013;
Sporns, 2013; Varoquaux and Craddock, 2013], and could
provide a more insightful picture of brain alterations
occurring in schizophrenia [Canu et al., 2014]. A growing
number of studies combined a graph theory approach
with functional MRI, diffusion MRI, or cortical thickness
correlation analysis to investigate brain network alterations
occurring in schizophrenia [Fornito et al., 2012; Griffa
et al., 2013; Lynall et al., 2010; van den Heuvel and For-
nito, 2014]. Studies adopting graph theory reported altera-
tions of the structural and functional brain topology in
schizophrenia, pointing out a less efficient network organi-
zation and a limited capacity of functional integration. To
our knowledge, no diffusion-based study on schizophrenia
used diffusion spectrum imaging (DSI) technique.

A decrease of brain network efficiency, associated with
a reduced capacity of integration of information between
brain areas, is a robust finding from anatomical connectiv-
ity studies [Fornito et al., 2012; van den Heuvel and For-
nito, 2014].

Various structural substrates have been proposed to

underlie the brain network efficiency loss occurring in

schizophrenia. Passing from the analysis of global network

properties to the role of individual nodes, different brain

cores have been shown to be involved in the pathology.

Applying a network based statistics approach, Zalesky

and colleagues identified a distributed fronto-parietal /

occipital network as possible substrate of global network

alterations [Zalesky et al., 2011]. Default mode network

(DMN) regions were also shown to be involved in the

pathology [Skudlarski et al., 2010; Zhang et al., 2012].
A common element among reported core-damages in

schizophrenia is the presence of brain network hubs.
Global network alterations can indeed be associated to a
distributed weakening of hub regions, and specially pre-
frontal, limbic, temporal, and parietal areas [van den Heu-
vel et al., 2010; Wang et al., 2012; Zhang et al., 2012]. Brain
hubs are nodes presenting a high degree of centrality in
the brain communication network, and have, therefore,
been associated to a considerable metabolic cost and a
potential higher vulnerability in the context of psychiatric
disorders [Bullmore and Sporns, 2012]. Brain connections
between a specific set of hub regions, the rich-club [van
den Heuvel and Sporns, 2011], have recently been shown
to be weakened in schizophrenia compared to controls,
and compared to connections between other brain areas
[van den Heuvel et al., 2013]. The involvement of the rich-
club has as well been underlined by functional studies on
schizophrenia [Yu et al., 2013], and diffusion MRI studies
on schizophrenia siblings [Collin et al., 2013] and 22q11
deletion syndrome (considered a genetic subtype of schiz-
ophrenia) [Ottet et al., 2013].

Even though a large amount of evidence points toward
an alteration of normal hub cores in schizophrenia and to
an affection of the related connections disproportionate to
other brain tracts, this effect may not necessarily be spe-
cific to schizophrenia neuropathology only [Rubinov and
Bullmore, 2013], considering that high degree nodes have
been implicated in different brain pathologies [Drzezga
et al., 2011; Griffa et al., 2013; Lo et al., 2010; Zhang et al.,
2011] and normal aging [Damoiseaux et al., 2009; Tomasi
and Volkow, 2012].

In schizophrenia, losses of overall brain network proper-
ties have been extensively associated to hubs and rich-club
disruption [Rubinov and Bullmore, 2013; van den Heuvel
and Fornito, 2014]; to alterations of brain network hier-
archical organization [Bassett et al., 2008]; to disruption of
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anatomical connections among fronto-parietal-occipital
areas [Zalesky et al., 2011] and fronto-temporal poles [van
den Heuvel et al., 2010], DMN [Skudlarski et al., 2010],
and to long associative fasciculi [Canu et al., 2014]. Taken
together these findings corroborate the hypothesis that
schizophrenia is associated to a widespread rather than
localized alteration of brain structural connectivity, imply-
ing a modified organization of the brain communication
system that involves high degree cores.

Building on these considerations, this study aims to
investigate core damages and specific brain network topo-
logical features underlying the connectome disruption
observed in schizophrenia, and to quantitatively character-
ize such alterations. Particularly, we propose that the
decentralization of a distributed set of regions within the
brain network is a possible mechanism underlying the
schizophrenia pathology. Brain connectivity networks
were estimated from DSI data for 16 chronic schizophrenia
patients and 15 healthy controls. DSI is characterized by
strong diffusion weighting and high angular resolution.
As a consequence DSI is more sensitive and specific than
classical diffusion tensor imaging to white matter micro-
structural organization, crossing-fibers can be mapped
accurately and tissue alterations affecting the slow diffu-
sion compartment may be captured [Baumann et al., 2012;
Mendelsohn et al., 2006; Wedeen et al., 2012].

As a first step, global and nodal integration and segrega-
tion network properties were assessed to corroborate previ-
ous findings [Bassett et al., 2008; van den Heuvel et al.,
2010; Wang et al., 2012; Zalesky et al., 2011]. Thereafter,
alterations of nodal properties allowed identifying a distrib-
uted core affected in schizophrenia, in substantial agree-
ment with previous studies [van den Heuvel and Fornito,
2014]. More importantly, the topological role of the affected
core within the overall brain connectivity patterns was
assessed in a graph theoretical framework, to characterize
brain organizational principles underlying the pathology.

METHODS AND MATERIALS

Subjects

Sixteen patients were recruited from the outpatient clinic
of the department of psychiatry, Lausanne University Hos-
pital, Switzerland, and met criteria DSM-IV for schizophre-
nia or schizoaffective disorder [American Psychiatric
Association, 2000]. Fifteen age, gender, and handedness
matched healthy controls were assessed with the Diagnos-
tic Interview for Genetic Studies [Preisig et al., 1999]. Sub-
jects with major mood, psychotic, or substance-use
disorders and having first-degree relative with a psychotic
disorder were excluded. Moreover, a history of neurologi-
cal disease was an exclusion criterion for all subjects.

Mean age for patients was 42.0 6 10.1 years; mean age
for controls was 41.1 6 9.6 years. No statistical difference
in age, gender, and handedness was present between the
two groups (Supporting Information Table S1). Fourteen of

the 16 patients were taking medication at the time of this
study, with an average medication of 341 6 202 mg chlor-
promazine equivalent dose (CPZ) [Andreasen et al., 2010].

Informed written consent in accordance with our institu-
tional guidelines (protocol approved by the Ethic Commit-
tee of Clinical Research of the Faculty of Biology and
Medicine, University of Lausanne, Switzerland) was
obtained all the subjects.

Magnetic Resonance Imaging

MRI sessions were performed on a 3 Tesla scanner
(Magnetom TrioTim, Siemens Medical Solutions),
equipped with a 32-channel head coil. Each scanning ses-
sion included a magnetization-prepared rapid acquisition
gradient echo (MPRAGE) sequence with 1 mm in-plane
resolution and 1.2 mm slice thickness, covering 240 3 257
3 160 voxels. The TR, TE and TI were, respectively, 2,300,
2.98, and 900 ms. The DSI sequence included 128
diffusion-weighted images with a maximum b-value of
8,000 s/mm2 and one b0 reference image. The acquisition
volume was made of 96 3 96 3 34 voxels with 2.2 3 2.2
3 3 mm resolution. TR and TE were 6,100 and 144 ms,
respectively. The acquisition time of the DSI sequence was
13 min and 27 s. DSI datasets were visually inspected for
signal drop-outs across the scanning time. Signal drop-
outs are linked to motion artifacts [Yendiki et al., 2014].
None of the investigated subjects presented important sig-
nal drop-outs and needed to be excluded from this study.

Brain Network Estimation

Weighted, undirected (symmetric) structural connectiv-
ity matrices were estimated combining diffusion and mor-
phological MRI data, and using the Connectome Mapping
Toolkit [Cammoun et al., 2012; Daducci et al., 2012; Hag-
mann et al., 2010b]. MPRAGE volumes were segmented
into white matter, grey matter, and cerebrospinal fluid
compartments, and linearly registered to the b0 volume.
Thereafter, the grey matter volume was subdivided into 68
cortical and 14 subcortical anatomical regions, according
to the Desikan–Killiany atlas [Desikan et al., 2006], and
defining N 5 82 brain network nodes. DSI data were recon-
structed according to [Wedeen et al., 2005], allowing to
estimate multiple diffusion directions per voxel. Determin-
istic streamline tractography [Mori et al., 1999] was per-
formed on DSI reconstructed data, initiating 32 streamline
propagations per voxel, per diffusion direction. The struc-
tural connectivity between each pair of grey matter nodes
was then quantified as normalized connection density,
defined as follows:
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with wuv connectivity strength associated to the edge con-
necting nodes u and v, W normalization factor, and duv
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connection density between nodes u and v as defined in
[Hagmann et al., 2008] (Supporting Information Fig. S1).
Specifically, Su and Sv indicate the surfaces of the brain
regions u and v, f 2 Fuv a streamline belonging to the set
Fuvof streamlines connecting regions u and v, and l(f) the
length of streamline f. The normalization by the streamline
length is motivated by the fact that the number of stream-
line propagation seeds per brain connection is propor-
tional to the average length of the streamlines belonging to
the connection [Hagmann et al., 2008]. No between-group
difference was present in terms of average streamline
length (Supporting Information Table S2). The normaliza-
tion reestablishes a more plausible and on average inverse
relationship [Gigandet et al., 2013; Oh et al., 2014] between
the connection length and the connectivity strength (Sup-
porting Information Fig. S2). Main analyses were repli-
cated without performing the normalization by the
streamline length (Supporting Information Fig. S3).

From now on when we refer to the number of stream-
lines connecting two brain regions, we refer to its normal-
ized version nuv

nuv5
X
f2Fuv

1

lðf Þ

The normalization factor W was defined as the sum of
the connection density values over all the edges belonging
to the subject-wise connectivity matrix:

W5
X
u2N

X
v2N;u6¼v

duv

Consequently, the weight of each edge represents a frac-

tion of the overall brain connectivity strength available for

the considered subject. The integrated connection density

W did not differ between the two groups (Supporting

Information Fig. S4). The present choice for the connection

weights allowed focusing on the topological organization

of each subject brain network, and disentangles dependen-

cies between measures of network organization and total

connectivity weight [van Wijk et al., 2010]. No difference

was present in term of network density, that is, fraction of

existing edges over the maximum number of possible

edges in the graph (Supporting Information Table S2).
For some analyses, we used a quantitative measure of

structural connectivity that was constructed as follows. For
each connecting tract the average generalized fractional
anisotropy (gFA) [Tuch, 2004] and average apparent diffu-
sion coefficient (ADC) [Sener, 2001] were computed. These
measures are known to be markers of tract integrity, such
as axonal packing and myelination levels [Beaulieu, 2002;
Takahashi et al., 2002]. To capture the relative importance
of tracts sizes we took a similar approach to previous
works [Fischi-G�omez et al., 2014; Hagmann et al., 2010a],
and weighted the gFA and (inverse) ADC values along
each tract by the number of fibers nuv belonging to the
tract (u,v) itself.

Network Analysis

For each subject’s connectome, global and local
weighted network measures describing integration and
segregation properties of the brain topology were com-
puted. All the analyses were performed using MATLAB
8.0, The MathWorks, and the Brain Connectivity Toolbox
[Rubinov and Sporns, 2010; Sporns, 2011].

Network integration was quantified through the global
efficiency [Latora and Marchiori, 2001] and the nodal close-
ness centrality [Freeman, 1978]. In brief, the global effi-
ciency is inversely proportional to the network
characteristic path length, and describes the level of integra-
tion of communication between distant parts of the brain
network. The nodal closeness centrality is a local measure
of centrality, proportional to the inverse average shortest
path length between the considered node and all the other
brain regions. Segregation properties were quantified
through the network transitivity [Newman, 2003] and the
nodal local efficiency [Latora and Marchiori, 2001]. The
transitivity measure expresses the average level of local
connectedness in the network [Opsahl and Panzarasa,
2009], and compared to other segregation measures (e.g.,
clustering coefficient) is robust with respect to low-strength
nodes contribution [Rubinov and Sporns, 2010; Watts and
Strogatz, 1998]. The nodal local efficiency describes the
degree of connectedness between the regions neighbor of
the considered node. These different measures were chosen
because of their relevance in describing small-world net-
works [Bassett and Bullmore, 2006; Latora and Marchiori,
2001; Rubinov and Sporns, 2010]. Taken together, these
measures allowed indentifying a distributed set of brain
nodes affected in schizophrenia patients. Specifically, in the
framework of this study, the affected core of the schizo-
phrenia brain network was defined as the set of nodes pre-
senting significantly decreased values of closeness centrality
(integration property) or local efficiency (segregation prop-
erty) compared to controls. As reported below, the affected
core included 26 out of 82 brain nodes.

An investigation of the closeness centrality measure
allowed identifying brain hubs, typically defined as the
nodes whose centrality measure is significantly higher
than on average [Sporns et al., 2007; van den Heuvel and
Sporns, 2011]. In this study, normal brain hubs where
identified in the control group as the set of nodes present-
ing a closeness centrality larger than the mean closeness
centrality over the whole 82 brain nodes, plus one stand-
ard deviation (Fig. 3). Moreover, for each control subject
and for each patient, the centrality ranking position (i.e.,
ordering number) of each node was evaluated with respect
to the overall, group-wise nodes ranking based on the
closeness centrality values (Fig. 3).

Subnetwork Analysis

Targeted and random attacks have been extensively
used in connectome analyses, particularly as a model to
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understand the relevance of localized brain damages
[Alstott et al., 2009; Bullmore and Sporns, 2009; Kaiser
et al., 2007]. In this study, we combined targeted and ran-
dom attacks to assess the degree of centrality of a specific
set of nodes within the overall brain network. In this con-
text, we refer to the degree of centrality of a set of nodes
as its topological relevance for the maintenance of the
overall network efficiency. The effect of a targeted attack
toward a specific set of brain nodes was quantified in rela-
tion to a reference distribution estimated from repeated
random attacks of nodes. Each attack entailed the removal
of a given set of nodes from the network, together with all
their connections.

Particularly, the topological role of the affected core was
assessed by performing a selective deletion of the entire a-
core (targeted attack) from each subject’s connectome, and
then by computing the efficiency measure within the sur-
viving network. The efficiency of the network under attack
that is, measured within the surviving nodes and edges,
characterizes the importance of the removed nodes with
respect to the overall network communication [Crucitti
et al., 2003]. The efficiency of the surviving network was
compared with a reference distribution of efficiency values
obtained after repeated random attacks (Fig. 4). For each
subject, the standard score of the efficiency after targeted
attack relative to the efficiency distribution after random
attack quantifies the topological centrality of the investi-
gated subnetwork within the overall brain network. A
standard score significantly lower than zero indicates that
the targeted attack toward the specific subnetwork is more
deleterious than by chance.

To estimate the efficiency reference distribution, the null

model for the random attack was matched with the tar-

geted attack in terms of (i) number of removed nodes and

(ii) overall removed connectivity strength. For each subject,

we first removed 26 randomly selected nodes together

with their edges; and then if necessary, removed addi-

tional edges to match, up to a certain tolerance r, the over-

all connectivity strength removed during the targeted

attack toward the a-core. In this way, the subject-wise

amount of damage, quantified in terms of removed num-

ber of nodes and total strength, remains identical across

conditions. The tolerance r was set to one standard devia-

tion of the efficiency values after targeted attack, com-

puted over all the subjects. During node and edge

removal, we controlled for network disconnectedness, that

is, none of the 56-nodes surviving network was discon-

nected. The random attack was repeated 1,000 times per

subject.
Furthermore, the affected core was quantitatively char-

acterized by computing (i) the number of shortest paths
crossing the a-core and (ii) the average connection strength
over the edges connecting a-core nodes.

A shortest path is the geodesic path connecting two
brain regions and represents a probable pathway of com-
munication [Bullmore and Sporns, 2012; van den Heuvel

et al., 2012]. All the brain network shortest paths were
evaluated. Subgroups of the whole-brain shortest paths
layout were then considered: (i) paths connecting nodes
not belonging to the a-core and passing through the
a-core, and (ii) paths connecting nodes not belonging to
the a-core but passing through the a-core. A path was
defined to pass through the a-core if it involved at least
one step within it.

The connection strength averaged within and outside
the affected core was quantified in terms of normalized
connection density w, gFA, and ADC.

Between Group Comparison

Between-group statistical differences of network and
connectivity measures defined in the previous paragraphs
were evaluated using the nonparametric Mann–Whitney–
Wilcoxon (MWW) test [Wolfe, 2012], setting the signifi-
cance level a at 0.05. When necessary (for instance, when
testing node-wise closeness centrality, local efficiency, and
centrality ranking) multiple comparison correction was
applied by controlling the false discovery rate (FDR) at
a 5 0.05 [Benjamini and Hochberg, 1995; Meskaldji et al.,
2013]. The null hypothesis that the efficiency standard
scores (from targeted and random attack comparison) of
each group of subjects come from a distribution whose
median is zero was tested with the nonparametric Wil-
coxon signed-rank (WSR) test [Wilcoxon, 1945]. The corre-
lation between the node centrality rankings of the two
groups was evaluated with the Spearman’s rank correla-
tion coefficient.

To limit the effect of possible confounding factors, the
two groups of subjects were carefully matched by age,
gender, and handedness (Supporting Information Table
S1). Accordingly, covarying by these three variables did
not change the outcomes of the statistical tests performed
in this study.

Previous studies suggested a possible relationship
between grey and white matter alterations and medication
[Moncrieff and Leo, 2010; Smieskova et al., 2009; Szeszko
et al., 2014]. The relationship between all the network
measures evaluated in this study and the CPZ dose equiv-
alents were assessed for the schizophrenia patients group
with the Spearman’s rank correlation coefficient.

RESULTS

Identification of Brain Regions Affected in

Schizophrenia

First, global integration and segregation properties of
the brain connectivity network were investigated in
patients and healthy subjects. The global efficiency and the
transitivity measures were both decreased in patients com-
pared to controls (P 5 0.0086, P 5 0.0042) (Fig. 1). There-
after, local integration and segregation properties were
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assessed. To identify the brain regions that mostly contrib-
ute to the loss of global topological properties, the single
nodes were tested for decreased closeness centrality and
decreased local efficiency (one-side MWW test).

The investigation of the local integration and segrega-
tion properties allowed indentifying a set of nodes com-
promised in schizophrenia. Such affected core was defined
as the set of nodes presenting a significant decrease in
nodal closeness centrality or local efficiency, surviving
multiple comparison correction at FDR 5 0.05. The affected
core (a-core in the sequel) included fronto-basal (bilateral
medial orbitofrontal and left lateral orbitofrontal), middle
frontal (bilateral caudal middle frontal and right rostral
middle frontal), and inferior frontal (right pars triangula-
ris, left pars orbitalis and left pars opercularis) cortices,
left precentral cortex, parietal (bilateral postcentral region,
right supramarginal, and precuneus, left superiorparietal)
and left temporal-occipital (lateral occipital, middle tempo-
ral, and inferior temporal) areas, the basal ganglia (bilat-
eral caudate, pallidum, and accumbens areas, right
putamen), and the left thalamus. Figure 2 shows the FDR-
corrected P-values from closeness centrality comparisons
for the cortical regions belonging to the affected core.
Local efficiency and closeness centrality values for the a-
core regions are as well reported in Supporting Informa-
tion Table S3, together with their between-group statistics.

The affected core encompassed 26 regions involving
approximately 30% of the whole brain network nodes.

There was no evidence for increased nodal closeness cen-
trality or local efficiency in patients compared to controls
in any of the 82 cortical and subcortical regions.

Topological Role of the Affected Core

To further investigate the brain network organization
and the role of the identified a-core within the overall
brain topology, we studied the degree of centrality of the
different brain regions within the individual brain net-
works. Particularly, brain nodes were ranked according to
their closeness centrality values to identify hubs regions
[Sporns et al., 2007], and to evaluate the topological posi-
tion of the a-core regions within the overall brain network.
Figure 3a represents the nodal closeness centrality values
for the control group in decreasing order. Regions belong-
ing to the affected core are represented in darker colors.
To compare the nodal ranking position between the two
groups, the ordering position of each node within the
subject-wise closeness centrality ranking was evaluated
and compared between the two groups. Moreover, the
Spearman’s rank correlation coefficient s between the two
group-wise average rankings was computed. No signifi-
cant difference in terms of nodes ranking was found
between the two groups (node-wise MWW test, a 5 0.05,
FDR 5 0.05); the Spearman’s rank correlation coefficient
between the group-wise average ranking of the nodes was
s 5 0.94 (P 5 e 219) for both hemispheres considered sepa-
rately. Eleven of the 26 a-core regions (approximately 40%

Figure 1.

Integration and segregation deficit in schizophrenia brain net-

works. First row: schematic representation of network integra-

tion and segregation aspects [Bullmore and Sporns, 2009]. The

green line highlights the shortest path between two distant

nodes; the blue line highlights a local triangle. Second row: box

plots representing global network measures dispersion for 16

chronic schizophrenia patients (SCHZ), and 15 healthy controls

(CTRL). The red line represents the group mean; the pink area

represents the 95% confidence interval. P-values from two-side

MWW tests are reported.

Figure 2.

Surface representation of the cortical areas belonging to the

affected core (in color), that is, presenting an alteration of seg-

regation and/or integration properties. Colormap: P-values of

significantly decreased closeness centrality (one-side MWW

test), corrected for multiple comparison (FDR a 5 0.05).
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of the a-core) positioned themselves among the most cen-
tral brain nodes (hubs), while the other regions of the a-
core were more peripheral.

We next examined the degree of centrality of the
affected core within the overall brain network. A series of
targeted and random attacks directed toward the a-core
itself, and toward an equal number of randomly selected

nodes were performed. The null model for the random
attack balanced the total strength removed for each
subject-wise targeted attack as described above. After each
attack, the efficiency of the network surviving the attack
was computed. The repetition of 1,000 random attacks
allowed evaluating a reference distribution for the effi-
ciency values computed within the surviving network. The

Figure 3.

Nodes ranking according to the average closeness centrality val-

ues, for the two hemispheres. Hubs nodes are concentrated on

the left of the bar plot. Dark bars represent nodes belonging to

the affected subnetwork. The dotted line represents the mean

closeness centrality value plus one standard deviation, for each

one of the two groups. a) Nodes ranking for the control sub-

jects group. b) Average closeness centrality values for the schiz-

ophrenia patients group, ordered according to the control

subjects nodal ranking.

Figure 4.

Effect of random and targeted attack on healthy subjects and

schizophrenia patients brain networks. a,b) Histograms repre-

senting the group-wise distributions of the efficiency values com-

puted after 1,000 repetitions of a random attacks matched to

the a-core targeted attack. The random attack was repeated

1,000 times per subject. a) control group; b) schizophrenia

patients group. The blue lines and light blue areas represent the

mean efficiency values after targeted attack toward the a-core,

61 standard deviation, for the two groups. c) Box plots repre-

senting the efficiency standard scores after targeted attack com-

pared to the reference distribution, for the two groups. The

reported P-value refers to group comparison (MWW test). Effi-

ciency standard scores were significantly smaller than zero for

both groups.
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efficiency after the targeted attack was compared to the
subject-wise reference distribution by computing its stand-
ard scores. Figure 4 shows the efficiency reference distri-
bution after random nodes removal, for the two groups.
The efficiency standard score was significantly lower than
zero for both groups (WSR test P< 0.0002) (Fig. 4), indicat-
ing that a targeted attack toward the affected core nodes
had a more severe impact on the overall brain communica-
tion capacity than a random attack toward an equal
number of nodes of similar strength. This means that the
a-core has a particular role in maintaining the global effi-
ciency of the network. Moreover, the efficiency standard
score was higher (closer to zero) in patients compared to
controls (P 5 0.01) (Fig. 4). Since in patients the a-core is
already weakened compared to controls, the impact of a
targeted attack is less harmful in patients than in controls.

Finally, the shortest paths layout related to the affected
core was compared between the two groups of subjects. A
shortest path is a favorable path, in terms of network dis-
tance, between two brain regions, and represents a proba-
ble pathway of communication between two nodes
[Bullmore and Sporns, 2012; van den Heuvel et al., 2012].

Considering the shortest paths connecting nodes exter-
nal to the a-core only, the number of paths passing
through the a-core was decreased in patients compared to
controls (P 5 0.008); on the contrary, the number of short-
est paths not passing through the a-core was increased in
patients (P 5 0.008) (Fig. 5). These findings are in line with
the definition of the a-core (decreased closeness centrality
and local efficiency), and highlight an alteration of the
communication pathways, as represented by shortest
paths, in schizophrenia patients.

Main results related to the identified affected core held
as well when no normalization by streamline length was

Figure 5.

Communication pathways throughout the affected core. The figure

represents the average shortest paths layout between nodes not

belonging to the affected core, for healthy controls (CTRL) and

schizophrenia patients (SCHZ). Only shortest paths between nodes

not belonging to the a-core, but passing through the a-core, are rep-

resented. The edge color and thickness represent the number of

shortest paths passing through the specific edge, averaged over the

two groups of subjects. The nodes are grouped according to their a-

core membership, and color-coded according to their lobe member-

ship. It is possible to visually appreciate that the average number of

shortest paths passing through the a-core is decreased in patients

compared to controls. The bar plot reports the number of shortest

paths between nodes not belonging to the a-core, and passing or not

passing through the a-core (group-wise median values 61 standard

deviation). * indicates significant between-group difference.

Figure 6.

Box plots representing values dispersion for connectivity
strength metrics averaged within (left column) and outside (right
column) the affected core. The following metrics are reported:
gFA weighted by the size of the tracts (number of fibers);
inverse ADC weighted by the size of the tracts; normalized con-
nection density. * indicates significant between-group difference.
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applied to the computation of the connectivity weights
(Supporting Information Fig. S3).

Characterization of the Affected Core in

Schizophrenia Patients

The affected core of schizophrenia brain network was
identified as the set of regions showing decreased integra-
tion or segregation properties. The a-core includes hubs
and peripheral regions, and plays an important role for
the achievement of high global network efficiency. The
centrality of the affected core is compromised in schizo-
phrenia patients.

To further characterize the affected core and the white
matter tracts connecting a-core regions, the connectivity
strength within and outside the affected core was estimated
and compared between the two groups. The connectivity
strength between pairs of brain regions was quantified
using three different metrics: (i) normalized connection den-
sity (w), (ii) gFA, and (iii) ADC. The three measures where
averaged over all the connections between a-core regions
(“within a-core”), and over all the connections between
regions not belonging to the a-core (“outside a-core”).

The normalized connection density represents the
amount of connectivity resources available for a particular
connection or subnetwork. The normalized connection
density within the a-core was decreased in patients com-
pared to controls (P 5 0.00035); consequently, the normal-
ized connection density outside the a-core was increased
in patients compare to controls (P 5 0.017) (Fig. 6) (Sup-
porting Information Table S2). This finding is in line with
the previous results reported in this study, and demon-
strates a redistribution of connectivity resources which dis-
favors the a-core regions.

To capture the importance of tract size, gFA and ADC
values where weighted by the tract size, expressed as num-
ber of fibers. The weighted gFA and the weighted inverse
ADC were altered in patients compared to controls when
averaged within the a-core (decreased gFA, P 5 0.0076;
decreased iADC, P 5 0.0042). No between-group difference
was found when considering the average gFA and iADC
over the connections external to the a-core (Fig. 6). Average
connectivity strength values and relative statistics are
reported in Supporting Information Table S2.

No correlation was found between any connectivity
measure considered in this Results section and the CPZ
equivalent dose.

DISCUSSION

The main contribution of this study is to further charac-
terize the connectome in schizophrenia with (i) the identi-
fication of a distributed set of affected regions (the affected
core or a-core), mainly responsible for the loss of global
integration and segregation network properties; (ii) the
topological characterization of this affected core within the

overall brain network; and (iii) the investigation of white
matter markers along the affected core tracts. These points
are discussed in the following.

Based on the brain probability map of Figure 2, we
observe that schizophrenia affects connectivity in large
parts of prefrontal, pericentral, superior parietal areas, and
striatum in both hemispheres, as well as left temporo-
occipital and thalamic areas, which is in good agreement
with previous literature of grey and white matter altera-
tions (see for instance, [Canu et al., 2014; Shepherd et al.,
2012; van den Heuvel et al., 2010; Zalesky et al., 2011]). By
definition the affected core comprises regions presenting a
decrease of local integration and segregation properties
(surviving FDR correction), with a preponderance of inte-
gration disruption (Supporting Information Table S3).
These nodes exhibit the strongest altered connectivity pat-
terns (dysconnectivity), and accordingly play a major role
with respect to the decline of the global topological prop-
erties observed in patients.

At the global level the schizophrenia connectome exhib-
ited decreased network efficiency, indicating an overall
deficit of functional integration in the network, and in
agreement with abundant literature [van den Heuvel and
Fornito, 2014]. The transitivity measure was as well
decreased in patients compared to controls, indicating an
overall altered level of local connectedness. Various
diffusion-based studies reported a less integrated and
more segregated network in schizophrenia [van den Heu-
vel and Fornito, 2014]. A tendency toward increased or
unchanged overall clustering coefficient has also been
reported [Zalesky et al., 2011]. In the present study no
brain region showed an increased level of segregation in
patients compared to controls. Discrepancies between
studies might be attributed to the use of different imaging
sequences, different edge weights or different network
binarization strategies.

The affected core identified in this study includes parts
of the DMN [Greicius et al., 2009] (medial prefrontal
regions), of the rich-club [van den Heuvel et al., 2012]
(right precuneus and left superior parietal cortex), and of
high degree cores of the human connectome [Hagmann
et al., 2008; van den Heuvel and Sporns, 2011], particularly
subcortical and medial orbitofrontal structures (Supporting
Information Table S3). The rich-club and hub nodes have
already been shown to be centrally and disproportionately
involved in the pathology compared to non-hub regions
[Crossley et al., 2014; Rubinov and Bullmore, 2013; van
den Heuvel and Fornito, 2014].

In this study, the nodes hubness was investigated by
analyzing the nodes ranking in terms of closeness central-
ity. Hubs can be identifies as the nodes whose centrality
measure (here: closeness centrality) exceeds the average
value of at least one standard deviation [Sporns et al.,
2007; van den Heuvel and Sporns, 2011]. Figure 3 illus-
trates the position of the a-core regions within the central-
ity ranking of the brain network nodes, with dot lines
indicating mean closeness centrality values plus one
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standard deviation. According to the considered hub defi-
nition, the affected core includes 10 of the 15 hubs
(approximately 65% of the whole network hubs), and 16 of
the 67 non-hub regions (approximately 25% of the whole
network non-hub nodes). Therefore, reported results con-
firm that hub regions are disproportionately affected in
schizophrenia compared to non-hub regions. Moreover, it
is noteworthy to observe that a-core nodes do concentrate
over the left part of the closeness centrality histogram
(higher centrality nodes), but also span toward the lower-
centrality area on the right parts of the histogram, there-
fore including less central (more peripheral) nodes. As
such, these findings corroborate the idea that schizophre-
nia is characterized by the breakdown of distributed brain
circuits with a preponderant involvement of central brain
nodes, and including as well more peripheral nodes, all
contributing to the decrease of communication efficiency
(Fig. 4). Significant pathophysiological hypotheses link
schizophrenia with the high vulnerability of brain network
hubs to metabolic insults [Bullmore and Sporns, 2012; Do
et al., 2009; Rubinov and Bullmore, 2013]. Additional com-
plex, yet unknown, factors might explain the involvement
of non-hub regions. Our findings suggest that schizophre-
nia might be not solely, or not specifically a hub disease.

Despite the weakening of highly central brain areas, the
investigation of the nodes centrality ranking (Fig. 3) did
not highlight any severe reorganization of the nodes cen-
trality hierarchy. None of the brain nodes presented an
altered position within the centrality ranking when com-
paring the two groups. Nevertheless, different aspects of
the brain network topological organization in schizophre-
nia could be highlighted through the characterization of
the affected core and related shortest paths (Fig. 5). The
affected core plays a distinct role in the maintenance of the
brain network communication capacities, in healthy and in
schizophrenia subjects, since its removal has a stronger than
random effect on global efficiency of communication. As
defined in this study, the efficiency standard score quanti-
fies the severity of the impact of a targeted attack against
the a-core, compared to a random attack. An efficiency
standard score lower than zero was observed in both control
and patient groups, indicating that the communication cen-
trality of the affected core was higher than expected by
chance. Furthermore, the harmful impact of a targeted
attack toward the affected core was significantly more
severe in healthy subjects than in patients. These results
highlight the fact that removing nodes that already suffer
dysconnectivity has a smaller impact than when the
removed nodes have normal connectivity (Fig. 4).

The brain network organization observed in the investi-
gated schizophrenia cohort is characterized by an alteration
of the shortest paths layout, and by a redistribution of the
relative connection weights. The number of shortest paths
passing through the affected core was decreased in patients
compared to controls (Fig. 5). The normalized connectivity
strength, that is, the relative amount of connectivity resour-
ces dedicated to a particular connection or subnetwork, was

as well decreased in patients compared to controls when
averaged within the affected core (Fig. 6). In general, these
findings indicate a weakening of the functional role of the
identified affected core with respect to the global brain net-
work communication. This topological configuration leads
to less efficient global network topology.

Microstructural white matter alterations could underlie
the topological decentralization of the affected core. The
alteration of gFA and ADC values along the affected core
tracts (Fig. 6) suggests a disruption of white matter prop-
erties which could be specific to the affected core circuits
(no alteration of gFA and ADC values was found when
considering tract external to the a-core). This result sug-
gests and intrinsic microstructural alteration of the a-core
white matter regions.

This study has various limitations. First, for most
aspects of this report, the connection strength characteriza-
tion relies on a normalized version of the connectivity den-
sity between region pairs. Although the proposed
normalization allows focusing on network topology rather
than on absolute connectivity strength alterations, and
allows reducing the intersubjects variability, it does not
directly take into account white matter microstructural
properties. Hence, we cannot distinguish whether the
observed topological alterations observed in the schizophre-
nia connectome are related to an intrinsic pathology of the
white matter, to an imbalance and redistribution of white
matter tracts, and/or to compensatory effects. However, we
quantitatively studied the connectivity strength of the a-
core with diffusion-based white matter markers (gFA and
AD), which were clearly diminished in patients. This result
suggests the presence of intrinsic white matter microstruc-
tural alterations of the a-core connections. However, the use
of more specific, possibly multimodal white matter markers
such as magnetization transfer ratio or T2 relaxation [Laule
et al., 2007], or new diffusion-based quantitative techniques
[Alexander, 2008; Assaf et al., 2013], could potentially
address this issue more fully. Second the restricted size of
the sample limits the statistical power and the expected
robustness of the findings. For instance, the reduced num-
ber of subjects included in this study may have as a conse-
quence that the size of the affected subnetwork is
underestimated. The replication of the presented findings
on larger, possibly independent datasets would definitively
be desirable. Third, this study offers a partial vision of schiz-
ophrenia pathoconnectomics [Rubinov and Bullmore, 2013],
focusing on relative network organizational principles, and
shortest paths framework. Alternative visions of brain com-
munication mechanisms such as random walk processes
[Go~ni et al., 2013] could offer new interpretations of patho-
logical configurations.

CONCLUSION

This study characterizes the network topology underly-
ing the disruption of global network communication
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capacity observed in schizophrenia. The previously
reported loss of global structural network integration is
confirmed. A set of distributed nodes, which drive this
global efficiency loss in patients, is identified as the
affected core of schizophrenia. Through the failure of these
core nodes the topology of the schizophrenia connectome
is modified in a way that the shortest path layout is redis-
tributed yielding a more decentralized network. The
affected core of patients is characterized by microstructural
changes of its connections as measured with gFA and
inverse ADC leading to the above described topological
changes.
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