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Identification of factors that predict recurrent antisocial behavior
is integral to the social sciences, criminal justice procedures, and
the effective treatment of high-risk individuals. Here we show that
error-related brain activity elicited during performance of an in-
hibitory task prospectively predicted subsequent rearrest among
adult offenders within 4 y of release (N = 96). The odds that an
offender with relatively low anterior cingulate activity would be
rearrested were approximately double that of an offender with
high activity in this region, holding constant other observed risk
factors. These results suggest a potential neurocognitive biomarker
for persistent antisocial behavior.

impulsivity | recidivism | risk assessment

Risk assessment is a major component of criminal justice and
treatment decisions. One crucial application of such pre-

dictions is the ability to identify, manage, and remediate anti-
social behavior. Decisions that rely on antisocial risk prediction
pervade the justice system, beginning with recommendations for
bail, jail, and probation to sentencing, civil commitment, parole
decisions, diversion, and treatment program assignments, to
name a few. Initial attempts to predict future antisocial behavior
based purely on clinicians’ opinions have been shown to be highly
inaccurate (1). Subsequent research that used evidence-based
static (e.g., age, sex, criminal history) and dynamic (e.g., impul-
sivity, drug use, social support) risk factors have led to significant
improvements in predicting future antisocial behavior (2–4).
One of the strongest and most widely studied risk factors for

recidivism is impulsivity, or behavioral disinhibition, the persis-
tent lack of restraint and consideration of consequences (3). Risk
assessments, personality tests, and neuropsychological measures
have been used to assess impulsivity and have demonstrated
the ability to predict future antisocial behavior. However, these
latter measures serve only as proxies for direct measurement
of the brain’s inhibitory and cognitive control systems. Indeed,
neuroscientists have suggested that endophenotypes carry the
potential to characterize underlying traits and abnormalities in-
dependently of behavioral phenotypes (5). This stance has been
supported by recent functional MRI (fMRI) studies that have,
for instance, accurately predicted choices in a motor-decision
task (6), substance abuse relapse (7–10), and consumer pur-
chases (i.e., neuromarketing) (11). These results raise the pos-
sibility that more direct measures of brain activity associated with
impulse control may lend incremental utility to the prediction of
future antisocial behavior.
The brain regions associated with impulse control have been

well characterized. Consistent among these regions is the ante-
rior cingulate cortex (ACC), a limbic region associated with error
processing, conflict monitoring, response selection, and avoid-
ance learning (12–16). Neurobiological models suggest that the
ACC is central to an error-monitoring circuit wherein it relays
error information from the basal ganglia and inferior frontal
cortex to motor areas. These motor areas then update behavioral
plans and feed back to the basal ganglia and frontal cortex,
facilitating learning (12). Animal lesion studies have shown
that focal damage to the anterior cingulate results in difficulty

learning to regulate behavior (17). In humans, cingulate damage
has been shown to produce changes in disinhibition, apathy, and
aggressiveness. Indeed, ACC-damaged patients have been classed
in the “acquired psychopathic personality” genre (18). Moreover,
engagement of the ACC during error conflicts in healthy adults
has been shown to prospectively predict improvements in cogni-
tive control (19).
Here we evaluate the hypothesis that ACC activity associated

with a go/no-go (GNG) impulse control task will contribute to
the prediction of future antisocial behavior (i.e., rearrest) in
a longitudinal, prospective study of released criminal offenders.
Several brain regions in addition to the ACC have been associ-
ated with impulse control (e.g., basal ganglia, dorsolateral pre-
frontal cortex). However, studies using Kiehl et al.’s (13) GNG
task generally find the ACC is the most robustly engaged region
during inhibitory control; thus we focus exclusively on the ACC
region in this study.

Results
Association Between ACC and Error Rate. By using hierarchical lin-
ear regression, we examined the association between ACC re-
sponse and the percentage of commission errors in the GNG task.
As expected, lower ACC activity entered at step 2 corresponded
to a higher rate of commission errors, controlling for variance
attributable to age at step 1 (R2 = 0.08, ΔR2 = 0.04, β = −0.21, P <
0.05). Mean commission error and hit rates on the GNG task were
25.04 (13.00) and 96.56 (6.40), respectively.

Survival Analysis. First, a Kaplan–Meier survival function was
computed to describe the proportion of participants surviving
any felony rearrest over the 4-y follow-up period, ignoring the
influence of any particular risk factor (Fig. S1). Cox proportional-
hazards regression was then used to examine (i) the zero-order
effects of ACC activity on months to rearrest for any crime, (ii)
the shared and unique influence of the ACC and other potential
risk factors on months to rearrest for any crime, (iii) for non-
violent crimes, and (iv) the shared and unique influence of the
medial prefrontal cortex (mPFC) control region and other po-
tential risk factors on months to rearrest for any crime. Reliability
of the β-coefficients was evaluated by resampling each Cox dis-
tribution in a bootstrapping sequence with 9,999 iterations.
Cox model A examined the zero-order effect of the error-

related ACC response parameter on months to any felony re-
arrest before entering other covariates into the model (Tables 1
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and 2). A significant association was found whereby, for every
one unit increase in ACC activity, there was a 1.39 (i.e., 1/exp[B])
decrease in the probability of rearrest.
For the primary hypothesis test (model B), months to any

felony rearrest was regressed on eight potential predictors in-
cluding age, Hare Psychopathy Checklist–Revised (PCL-R) fac-
tor scores and their interaction, lifetime prevalence of alcohol
or drug abuse or dependence, GNG commission error rate, and
the ACC parameter (Tables 1 and 2). A significant effect of the
overall model was obtained. Age and PCL-R factor 2 score
exhibited marginal effects on rearrest with the use of a threshold
of P < 0.05. The ACC was the only unique significant predictor
that was robust to bootstrap resampling. For every one unit in-
crease in ACC activity, there was a 1.96 (i.e., 1/exp[B]) decrease
in the probability of rearrest (P < 0.001). For visualization pur-
poses, this model was reconstructed with the use of a median
split of “high” and “low” ACC activity (Fig. 1).
Model C was identical to model B except that the event cri-

terion was defined as the presence of any nonviolent felony
rearrest since release. Here, the predicted pattern of results was
even more pronounced (Tables 1 and 2 and Fig. S2). A signifi-
cant omnibus effect on rearrest was found. As earlier, this effect
was driven by age, PCL-R factor 2, and ACC. For every one unit
increase in ACC activity, there was a 2.44 decrease in the
probability of rearrest after controlling for the other covariates
(P < 0.001). As to be expected, the small number of participants
rearrested for a violent offense (n = 9) was insufficient to justify
an independent survival analysis of this group.
Model D was identical to model B except that the ACC pa-

rameter was replaced with that of an a priori control region (an
anterior portion of the mPFC; see also ref. 5) not commonly
implicated in response inhibition (Fig. S3). As expected, changes
in mPFC activity were not associated with the probability of
rearrest (P = 0.20).
Supporting analyses included individual Cox regressions

for the seven observed risk factors (Table S1) and Pearson
correlations (r) describing associations among all nine cova-
riates (Table S2).

Discussion
The present analysis shows that hemodynamic activity within
the brain prospectively predicted rearrest in an offender sample.
The anatomical region associated with rearrest, the ACC, was
defined by an a priori hypothesis related to response inhibition
and error processing in healthy adults whereby increased ACC
activity has been associated with improved inhibitory control
(19). The ACC region demonstrated incremental predictive
validity independent of other known risk factors and the GNG
commission error rate, suggesting a possible predictive advan-
tage over some behavioral and personality risk factors.
This pattern of results raises the possibility that brain activity

in regions such as the ACC, elicited by a simple experimental
task, may lend incremental utility to existing behavioral risk
factors in the ability to predict rearrest. In addition, these results

support existing theories that paralimbic function subserves the
relationship between cognitive control and antisocial behavior
(20) and that the ACC in particular may facilitate inhibitory
learning by feeding error-related information to inhibitory con-
trol centers (12). Moreover, this pattern supports the view that
neurocognitive endophenotypes carry the potential to charac-
terize underlying traits and defects independently of behavioral
phenotypes, such as self-report instruments and expert-rater
diagnoses based on client interviews and collateral historical
information. Finally, this work highlights potential neuronal
systems that could be targeted for treatment intervention. One
plausible hypothesis is that interventions that modulate ACC
activity may help to increase cognitive control systems and
thereby reduce future recidivism. Initial support for this hy-
pothesis has already been reported in a recent study implicating
the ACC in treatment responsiveness among children with ex-
ternalizing problems (21).
Before sufficient confidence in the effects can be established,

test–retest reliabilitymust be demonstrated. Here, reliability of the
ACC result was demonstrated by using bootstrap resampling.
Release age and PCL-R factor 2 score also met this criterion, but
only for nonviolent crimes. Additional research would be required
to determine why the other covariates did not exhibit predictive
effects. Efforts to replicate these results should examine the ro-
bustness to variations in task, sample characteristics, sample size,
anatomical region of interest (ROI), and analytic procedures.
Should the neuroimaging effects be robust to replication, they

remain silent on the question of suitability in making individual-
level predictions. Whether neurobiological markers should
ever be used to make predictions about individual offenders’ risk
is a thorny question that, at the least, depends on (i) whether
these estimates can survive particular sensitivity and specificity
thresholds with the use of large random samples, (ii) whether
they can survive a required legal standard of proof, and (iii)
whether their use would violate offender rights (22, 23). It is
noteworthy that existing clinical risk assessment tools, including
those reliant on personal health information about the offender,
already permeate criminal justice decision settings, such as civil
commitment decisions. We are skeptical that emerging neuro-
biological markers could ever independently outperform these
existing tools in sensitivity and specificity, but they could po-
tentially improve overall risk estimates in combination with
known psychosocial risk factors. If so, their potential admissi-
bility in legal settings may be greatest in decisions involving a low
standard of proof such as treatment access decisions rather than
in high-stakes decisions such as sentencing. However, even in
low-stakes decisions, use of neurobiological information would
force us to confront the question of whether it presents any
unique civil rights challenges above and beyond that of existing
practices (23). In this regard, one advantage that functional brain
activity has vs. some other risk factors (e.g., age of first offense) is
that the hemodynamic response is relatively dynamic, or ame-
nable to change (24). Future treatment research efforts can
potentially exploit this characteristic in the testing of therapies,

Table 1. Cox model statistics

Model Description −2 Log likelihood

Overall Change from previous

χ2 df P value Δχ2 df P value

A Any crime: zero-order 413.45 4.60 1 * 4.67 1 *
B Any crime: ACC 327.65 17.35 8 * 18.33 8 *
C Nonviolent crimes: ACC 244.33 25.48 8 ** 28.43 8 ***
D Any crime: control region 337.77 8.27 8 0.41 8.21 8 0.41

Omnibus test of Cox regression model with χ2 statistics showing (model A) the zero-order effect of ACC activity on months to rearrest for any crime, (model B)
the shared and unique influence of the ACC and other potential risk factors on months to rearrest for any crime, (model C) for nonviolent crimes, and (model D)
the shared and unique influence of the mPFC control region and other covariates on months to rearrest for any crime. *P < 0.05, **P < 0.01, and ***P < 0.001.
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programs, and medications aimed at remediating problems in
behavioral disinhibition. In the meantime, functional brain pat-
terns may still be useful at the group level, enabling scientists
to learn how certain cohorts with shared risk factors respond to
different types of treatments to ultimately improve their access to
early intervention options.

Methods
Participants. Participants were 96 adult male offenders ranging in age from
20 to 52 y (Mean, 33.1; SD, 7.78). Ten of them did not complete some of the
assessments. Approximately 6% were left-hand–dominant. Based on Na-
tional Institutes of Health racial and ethnic classification, 36% of the sample
self-identified as white, 9% as black/African American, 9% as American In-
dian, 28% as mixed/OTHER, 42% as Hispanic, and 14% chose not to respond.
They were paid $1/h, a rate commensurate with standard pay for work
assignments at their facility.

Participants completed a number of psychological and behavioral as-
sessment measures and an fMRI-based inhibition task using the Mind Re-
search Network’s Mobile MRI system before release from one of two New
Mexico state correctional facilities. All participants were determined to be
free of traumatic brain injury and psychosis, and had a general IQ of greater
than 70. Participants reported having normal hearing, and visual acuity
was normal or corrected to normal with the use of contact lenses or MRI-
compatible glasses. After being released, they were tracked from 2007 to
2010. The average follow-up period was 34.5 mo. Participants provided
written informed consent in protocols approved by the institutional review
board of the University of New Mexico.

Nonoffender Sample. An independent sample of 102 healthy adult non-
offenders (49 men) provided functional imaging results from which the
a priori peak voxel could be defined. This sample was drawn from the Olin

Neuropsychiatry Research Center at the Institute of Living Hartford Hospital
and the surrounding community of Hartford, CT, and ranged in age from
23 to 52 y (Mean, 33.92; SD, 9.64). Seven participants (7%) were left-handed.
The sample reflected the ethnic nature of the community: 68% of the sample
self-identified as white, 10% as black/African American, 9% as Hispanic, 8%
as Asian, and 6% as mixed/other racial heritage.

Behavioral Task. Behavioral impulsivity was measured during fMRI using the
GNG task, a widely used procedure that requires participants to inhibit
a prepotent motor response. The task, modeled after the work of Kiehl
et al. (13), presents participants with a frequently occurring target (the
letter “X”; occurrence probability, 0.84) interleaved with a less-frequent
distracter (the letter “K”; occurrence probability, 0.16) on a computer
screen. Participants were instructed to depress a button with their right
index finger as quickly and accurately as possible whenever they saw the
target (“go” stimulus) and not when they saw the distractor (“no-go”
stimulus). Because targets are more frequent than distracters in this task,
a prepotent response toward the targets is elicited. When a distractor is
presented, participants are required to inhibit their button response,
which increases the rate of commission errors (Fig. S4). The commission
error rate was defined as the proportion of observed commission errors
among total no-go trials. Successful performance on this task requires the
ability to monitor error-related conflicts and to selectively inhibit the
prepotent go response on cue. Before scanning, participants completed
a brief practice session of ∼10 trials.

Experimental Design. The present fMRI study comprised an a priori ROI
analysis, and all imaging data used for that ROI analysis are included in
Dataset S1 in the form of a β-value for each subject. Dataset S1 also includes
codes and scores from all other predictors and measures reported.

The experimental design was adopted from Kiehl et al. (13). Two
scanning runs, each composed of 246 visual stimuli, were presented to

Table 2. Effect of individual predictors on rearrest

Model/predictor B SE (B)

Bootstrapped values

exp[B] 95% CI for exp[B]B SE(B) P value

Model A—zero-order: ACC
ACC −0.33 0.15 −0.33 0.14 * 0.72 0.53–0.97

Model B—any crime: ACC
Age at release −0.05 0.02 −0.05 0.03 0.07 0.96 0.91–1.00
PCL-R factor 1 score −0.03 0.07 −0.03 0.09 0.73 0.97 0.85–1.11
PCL-R factor 2 score −2.23 0.95 −2.23 1.34 0.06 0.11 0.02–0.70
PCL-R factor interaction 0.05 0.24 0.05 0.33 0.85 1.05 0.66–1.67
Alcohol abuse/dependence (lifetime) 0.08 0.20 0.08 0.24 0.72 1.08 0.72–1.61
Drug abuse/dependence (lifetime) −0.31 0.37 −0.31 0.53 0.49 0.74 0.35–1.53
GNG commission error rate −0.10 0.11 −0.10 0.15 0.41 0.90 0.73–1.12
ACC −0.68 0.21 −0.68 0.23 *** 0.51 0.34–0.76

Model C—nonviolent crimes: ACC
Age at release −0.07 0.03 −0.07 0.04 * 0.94 0.89–0.99
PCL-R factor 1 score 0.02 0.08 0.02 0.11 0.80 1.02 0.87–1.20
PCL-R factor 2 score −3.68 1.16 −3.70 1.74 ** 0.03 0.00–0.24
PCL-R factor interaction 0.36 0.33 0.36 0.45 0.31 1.43 0.76–2.72
Alcohol abuse/dependence (lifetime) 0.13 0.23 0.13 0.28 0.58 1.14 0.73–1.79
Drug abuse/dependence (lifetime) −0.46 0.43 −0.46 0.66 0.37 0.63 0.27–1.45
GNG commission error rate −0.06 0.13 −0.06 0.19 0.66 0.94 0.73–1.20
ACC −0.88 0.24 −0.88 0.26 *** 0.41 0.26–0.67

Model D—any crime: control region
Age at release −0.03 0.02 −0.03 0.03 0.19 0.97 0.93–1.01
PCL-R factor 1 score −0.09 0.07 −0.09 0.08 0.19 0.91 0.80–1.04
PCL-R factor 2 score −2.15 1.00 −2.15 1.31 0.07 0.12 0.02–0.83
PCL-R factor interaction 0.17 0.25 0.17 0.32 0.55 1.19 0.73–1.94
Alcohol abuse/dependence (lifetime) −0.01 0.19 −0.02 0.21 0.93 0.99 0.68–1.43
Drug abuse/dependence (lifetime) −0.01 0.38 0.00 0.52 0.99 0.99 0.47–2.10
GNG commission error rate −0.01 0.11 0.00 0.13 0.96 0.99 0.80–1.23
mPFC −0.15 0.11 −0.14 0.14 0.20 0.20 0.69–1.08

Results of Cox regression analyses examining the predictive effect of the ACC and other covariates on rearrest for (model A) any crime, (model B) any crime
controlling for covariates, (model C) nonviolent crimes controlling for covariates, and (model D) the effect of the mPFC control region on rearrest for any
crime controlling for covariates. Table reports unstandardized B, bootstrapped B, and relative risk ratio (exp[B]). *P < 0.05, **P < 0.01, and ***P < 0.001.
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participants using Presentation, a computer-controlled visual and auditory
software (Neurobehavioral Systems). Stimuli were displayed on a rear-
projection screen mounted at the rear entrance to the magnet bore and
subtended a visual angle of ∼3 × 3.5°. Each stimulus appeared for 250 ms
in white text within a continuously displayed rectangular fixation box.
Participants viewed the screen by means of a mirror system attached to the
head coil.

The stimulus onset asynchrony (SOA) between go stimuli varied pseu-
dorandomly among 1,000, 2,000, and 3,000 ms, subject to the constraint that
three go stimuli were presented within each consecutive 6-s period. The
no-go stimuli were interspersed among the go stimuli in a pseudorandom
manner subject to three constraints: the minimum SOA between a go and
a no-go stimulus was 1,000 ms; the SOA between successive no-go stimuli was
in the range of 10 ± 15 s; and no-go stimuli had an equal likelihood of oc-
curring at 0, 500, or 1,000 ms after the beginning of a 1.5-s acquisition pe-
riod. By jittering stimulus presentation relative to the acquisition time, the

hemodynamic response to the stimuli of interest was sampled effectively at
500-ms intervals.

Behavioral responses were recorded by using a commercially available
MRI-compatible fiberoptic response device (Lightwave Medical). Correct hits
were defined as go (ie, X-stimuli) events that were followed by a button press
within 1,000 ms of stimulus onset. Correct rejections were defined by an
absence of a motor response within 1,000 ms of the no-go stimulus. Com-
mission errors were defined as the presence of a response within 1,000 ms of
the onset of a no-go stimulus.

Image Acquisition and Processing: Offender Sample. MRI acquisition param-
eters were identical to those of Harenski et al. (25). Images were collected
with a mobile Siemens 1.5-T Avanto system with advanced SQ gradients
(max slew rate, 200T/m/s; 346 T/m/s vector summation, rise time 200 μs)
equipped with a 12-element head coil. The echoplanar image gradient-echo
pulse sequence (repetition/echo times, 2,000/39 ms; flip angle, 75°; field of
view, 24 × 24 cm; 64 × 64 matrix; 3.4 × 3.4-mm in-plane resolution; 5-mm
slice thickness; 30 slices) effectively covers the entire brain (150 mm) in 2,000
ms. Head motion was limited by using padding and restraint. Functional
images were reconstructed offline at 16-bit resolution and manually reor-
iented to approximately the anterior commissure/posterior commissure
plane. Motion correction was achieved by using a preprocessing pipeline
designed by Mazaika (26). Functional images were analyzed using Statistical
Parametric Mapping software (SPM5). Functional images were spatially
normalized to the Montreal Neurological Institute template via a nine-
parameter affine transformation by using smooth basis functions to account
for nonlinear differences (27), and spatially smoothed (8 mm full width at
half maximum). High frequency noise was removed by using a low-pass filter
(cutoff, 128s). Runs were normalized to an in-brain mean of 100 (arbitrary
units) to compensate for intensity variations across runs [note that this is not
the “proportional” scaling procedure that can result in artifactual deacti-
vations when global effects are correlated with the local blood oxygen level-
dependent (BOLD) signal] (28). Response types (hits and commission errors)
were modeled as separate events. Event-related responses were modeled
by using a synthetic hemodynamic response function composed of two
γ-functions. The first γ-function modeled the hemodynamic response by
using a peak latency of 6 s. A term proportional to the derivative of this
γ-function was included to allow for small variations in peak latency. The
second γ-function and associated derivative was used to model the small
“overshoot” of the hemodynamic response on recovery. A latency variation
amplitude-correction method was used to provide a more accurate estimate
of hemodynamic response for each condition that controlled for differences
between slices in timing and variation across regions in the latency of the
hemodynamic response (29).

Functional images were computed for each participant that represented
hemodynamic responses associated with commission errors and hits. Ac-
tivity associated with these contrasts was evaluated in a whole-brain
analysis across participants by using a t test in SPM5. All contrasts were
corrected with a family-wise error (FWE) threshold of P < 0.0001 or higher

Fig. 1. Cox survival function showing proportional rearrest survival rates of
high (solid green) vs. low (dashed red) ACC response groups for any crime
over a 4-y period. Results of this median split analysis were equivalent to
that of the parametric model: bootstrapped B = 0.96; SE = 0.40; P < 0.01;
95% CI, 0.29–1.84. The mean survival times to rearrest for the low and high
ACC activity groups were 25.27 (2.80) mo and 32.42 (2.73) mo, respectively.
The overall probabilities of rearrest were 60% for the low ACC group and
46% for the high ACC group.

Fig. 2. (A) A priori seed region (red) for BOLD response to commission errors vs. correct hits in anterior cingulate from a GNG task with an independent
sample of 102 healthy adult nonoffenders; peak voxel x = −3, y = 24, z = 33; radius = 14 mm sphere; t(94) = 13.38, P < 0.0001, FWE. A priori control region
(blue) embodying anterior portion of the medial prefrontal cortex (peak voxel: 0, 51, −6; radius = 14 mm sphere). (B) Mean hemodynamic response change in
offender sample (n = 96) during commission errors vs. correct hits from sagittal (Upper Left), coronal (Right), and axial (Lower Left) orientations. Peak ac-
tivation located at x = 3, y = 24, z = 33 within the ACC ROI (P < 0.00001, FWE).
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(Table S3). Activations were overlaid on a representative high-resolution
structural T1-weighted image from a single subject from the SPM5 ca-
nonical image set.

Image Acquisition and Processing: Nonoffender Sample. Imaging data were
collected on a Siemens Allegra 3-T system located at the Olin Neuropsychiatry
Research Center (Hartford, CT). The echoplanar image gradient-echo pulse
sequence (repetition/echo times, 1,500/28 ms; flip angle, 65°) effectively
covered the entire brain (150 mm) in 1.5 s. Functional image runs were
motion-corrected by using an algorithm unbiased by local signal changes
(INRIAlign) (30) as implemented in the SPM2 software (Wellcome Trust
Centre for Neuroimaging, University College London). Normalized images
were smoothed at 9 mm full width at half maximum. All other specifications
were identical to that of the offender sample.

Functional ROIs. An a priori dorsal–caudal region of the ACC was developed
from previous literature (13, 16, 31) (Fig. 2). This region has been associated
with the “cognitive” as opposed to “affective” functions of the ACC (32).
The seed coordinate was defined by the peak BOLD activity during com-
mission errors vs. correct hits within an independent sample of 102 healthy
adult nonoffenders who underwent the same GNG task (Fig. 1A). Defining
hits as a baseline permitted the examination of commission errors while
controlling for the motor response. A control region was also defined by this
nonoffender dataset (a similar approach is described in ref. 5), namely an
anterior portion of the mPFC, one of several regions that was not engaged
by the GNG task in this nonoffender sample. Fourteen-millimeter radius
spheres were defined around center coordinates derived from the activation
peaks in each region. ROI activity was modeled by computing a mean β-value
for each participant.

Covariate Risk Assessment. Data from several additional potential risk factors
were obtained to examine the incremental predictive validity of the ACC
response. All these variables have been previously found to predict antisocial
behavior in offender populations or are correlated with activity within the
anterior cingulate (19, 33). Indices of behavioral disinhibition included the
commission error rates from the GNG task described earlier and scores from
the Hare PCL-R (34), a detailed archival analysis and semistructured interview
(Mean, 23.49; SD, 6.98). Twenty percent of the assessed sample (n = 90) met
criteria for a diagnosis of psychopathy (score of ≥30). The PCL-R provides
a reliable and valid assessment of psychopathy in incarcerated, forensic,
psychiatric, and normal populations (35–37). To examine the independent
clusters of psychopathic traits, the PCL-R items have also been organized into
separable subfactors. The two-factor model distinguishes between in-
terpersonal/affective attributes, such as glibness and lack of empathy, and
antisocial behavioral attributes, such as early behavioral problems and im-
pulsivity (factors 1 and 2, respectively). PCL-R total score was not entered
into any models because of its collinearity with the entered PCL-R factor
scores. Number of previous arrests was also not included as an independent
predictor because this variable was part of the scoring criteria used on the
assessment of PCL-R factor 2. PCL-R assessments were conducted by trained
raters who exhibited high interrater reliability (intraclass correlation co-
efficient,0.93) for the PCL-R total score (25).

Additional risk factors included age at release and lifetime prevalence
of drug and alcohol abuse/dependence, which were assessed by using

the structured clinical interview for the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, Research Version (38). Abuse and de-
pendence were defined by diagnostic scores of 2 and 3, respectively. Drug
abuse/dependence included an average of scores from the following drug
classes: sedatives, cannabis, stimulants, opioids, cocaine, and hallucinogens.
Nine percent of the assessed sample (n = 92) qualified for drug abuse
without dependence, and 87% qualified for drug dependence for at least
one of the drug categories. Twenty-two percent qualified for alcohol abuse
without dependence, and 58% qualified for alcohol dependence. Intelli-
gence was assessed by using vocabulary and matrix reasoning subtests of the
Wechsler Adult Intelligence Scale (Mean, 95.13; SD, 12.77) (39,40). [IQ is not
typically a predictor of recidivism, but to ensure that IQ did not moderate
the effect of the ACC in predicting rearrest, we conducted a supplementary
survival analysis with IQ included in the model. In this model, the ACC still
predicted rearrest whereas IQ did not. Model B (any crime): ACC, B = −0.67
(0.21), P < 0.05, exp[B] = 0.99 (95% CI, 0.96–1.01); IQ, B = −0.02 (0.02), P =
0.67, exp[B] = 0.99 (95% CI, 0.96–1.03). Model C (nonviolent crime): ACC, B =
−0.94 (0.27), P < 0.001, exp[B] = 0.39 (95% CI, 0.23–0.66); IQ, B = −0.01 (0.02),
P = 0.67, exp[B] = 0.99 (95% CI, 0.96–1.03).]

Follow-Up Procedure. Rearrest data, including arrest date and offense type,
were obtained by a professional criminal background check service (SSC),
which conducted national, state, and county criminal searches following each
participant’s release date. Approximately 53% of the sample was rearrested
at least once between their release date (ranging from 2007 to 2010) and
their follow-up date during July to September 2011. Offense type was
classified into one of 27 common felony categories by 10 trained raters. In
line with previous literature (41), minor parole and probation violations
were excluded from analysis, and the remaining offenses were further
classified as violent or nonviolent when warranted (Table S4). A larger
portion of the sample was rearrested for nonviolent offenses (41.7%) than
for violent offenses (9.4%).

Analytic Strategy. The primary hypothesis was evaluated by using Cox pro-
portional-hazards regression. Cox regression is a semiparametric test that
evaluates differences in individuals’ time “at risk” to an event (e.g., rearrest)
while estimating time for cases that have yet to reach that event (censored
cases). The dependent variable is the cumulative survival function, or pro-
portion of cases surviving the event. Hazard ratios (i.e., exp[B]) are com-
puted to characterize each individual’s relative odds of reaching the event
for every one unit change in the risk factor (e.g., brain response), controlling
for other covariates. All predictors were mean-centered.
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